Java教程

Linkerd 2.10(Step by Step)—2. 自动化的金丝雀发布

本文主要是介绍Linkerd 2.10(Step by Step)—2. 自动化的金丝雀发布,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

通过结合 LinkerdFlagger 来根据服务指标自动金丝雀(canary)发布,从而降低部署风险。

Linkerd 2.10 中文手册持续修正更新中:

  • https://linkerd.hacker-linner.com/

Linkerd 2.10 系列

  • 快速上手 Linkerd v2 Service Mesh(服务网格)
  • 腾讯云 K8S 集群实战 Service Mesh—Linkerd2 & Traefik2 部署 emojivoto 应用
  • 详细了解 Linkerd 2.10 基础功能,一起步入 Service Mesh 微服务架构时代
  • Linkerd 2.10(Step by Step)—1. 将您的服务添加到 Linkerd

Linkerd 的流量拆分(traffic split)功能允许您在服务之间动态转移流量。
这可用于实施低风险部署策略,如蓝绿(blue-green)部署和金丝雀(canaries)。

但简单地将流量从一个服务版本转移到下一个版本只是一个开始。
我们可以将流量拆分与
Linkerd 的自动黄金指标(golden metrics)遥测相结合,
并根据观察到的指标推动流量决策。例如,我们可以逐渐将流量从旧部署转移到新部署,
同时持续监控其成功率。如果在任何时候成功率下降,
我们可以将流量转移回原始部署并退出发布。
理想情况下,我们的用户始终保持快乐(remain happy),没有注意到任何事情!

在本教程中,我们将引导您了解如何将 Linkerd
Flagger 结合使用,
后者是一种渐进式交付工具,
可将 Linkerd 的指标和流量拆分绑定在一个控制循环中,
从而实现全自动、指标感知的金丝雀部署。

先决条件

  • 要使用本指南,您需要在集群上安装 Linkerd 及其 Viz 扩展。
    如果您还没有这样做,请按照安装Linkerd 指南进行操作。
  • Flagger 的安装依赖于 kubectl 1.14 或更新版本。

安装 Flagger

Linkerd 将管理实际的流量路由,
Flagger 会自动执行创建新 Kubernetes 资源(resources)、
观察指标(watching metrics)和逐步将用户发送到新版本的过程。
要将 Flagger 添加到您的集群并将其配置为与 Linkerd 一起使用,请运行:

kubectl apply -k github.com/fluxcd/flagger/kustomize/linkerd
# customresourcedefinition.apiextensions.k8s.io/alertproviders.flagger.app created
# customresourcedefinition.apiextensions.k8s.io/canaries.flagger.app created
# customresourcedefinition.apiextensions.k8s.io/metrictemplates.flagger.app created
# serviceaccount/flagger created
# clusterrole.rbac.authorization.k8s.io/flagger created
# clusterrolebinding.rbac.authorization.k8s.io/flagger created
# deployment.apps/flagger created

此命令添加:

  • Canary
    CRD
    可以配置发布的方式。
  • RBAC 授予 Flagger 修改它需要的所有资源的权限,例如部署(deployments)和服务(services)。
  • 配置为与 Linkerd 控制平面交互的控制器。

要观察直到一切正常运行,您可以使用 kubectl

kubectl -n linkerd rollout status deploy/flagger
# Waiting for deployment "flagger" rollout to finish: 0 of 1 updated replicas are available...
# deployment "flagger" successfully rolled out

设置 demo

demo 由三个组件组成:负载生成器(load generator)、部署(deployment)和前端(frontend)。
部署会创建一个 pod,该 pod 会返回一些信息,例如名称。
您可以使用响应(responses)来观察随着 Flagger 编排的增量部署。
由于需要某种活动流量才能完成操作,因此负载生成器可以更轻松地执行部署。
这些组件的拓扑结构如下所示:

要将这些组件添加到您的集群并将它们包含在 Linkerd
数据平面中,请运行:

kubectl create ns test && \
  kubectl apply -f https://run.linkerd.io/flagger.yml
# namespace/test created
# deployment.apps/load created
# configmap/frontend created
# deployment.apps/frontend created
# service/frontend created
# deployment.apps/podinfo created
# service/podinfo created

通过运行以下命令验证一切是否已成功启动:

kubectl -n test rollout status deploy podinfo
# Waiting for deployment "podinfo" rollout to finish: 0 of 1 updated replicas are available...

# deployment "podinfo" successfully rolled out

通过在本地转发前端服务并通过运行在本地的
http://localhost:8080 来打开检查它:

kubectl -n test port-forward svc/frontend 8080

我这里,为方便看到真实的一个 demo,直接加个 IngressRoute

ingress-route.yaml

apiVersion: traefik.containo.us/v1alpha1
kind: IngressRoute
metadata:
  name: podinfo-dashboard-route
  namespace: test
spec:
  entryPoints:
    - websecure
  tls:
    secretName: hacker-linner-cert-tls
  routes:
    - match: Host(`podinfo.hacker-linner.com`)
      kind: Rule
      services:
        - name: frontend
          port: 8080

你可以直接访问 https://podinfo.hacker-linner.com。

流量转移发生在连接的客户端而不是服务器端。
来自网格外部的任何请求都不会被转移,并且将始终被定向到主后端。
LoadBalancer 类型的服务将表现出这种行为,因为源不是网格的一部分。
要转移外部流量,请将入口控制器添加到网格中。

配置发布

在更改任何内容之前,您需要配置发布应如何在集群上推出(rolled out)。
该配置包含在
Canary
定义中。要应用于您的集群,请运行:

cat <<EOF | kubectl apply -f -
apiVersion: flagger.app/v1beta1
kind: Canary
metadata:
  name: podinfo
  namespace: test
spec:
  targetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: podinfo
  service:
    port: 9898
  analysis:
    interval: 10s
    threshold: 5
    stepWeight: 10
    maxWeight: 100
    metrics:
    - name: request-success-rate
      thresholdRange:
        min: 99
      interval: 1m
    - name: request-duration
      thresholdRange:
        max: 500
      interval: 1m
EOF

Flagger 控制器正在监视这些定义(definitions),并将在集群上创建一些新的资源。
要观察这个过程,运行:

kubectl -n test get ev --watch

将创建一个名为 podinfo-primary 的新部署,
其副本数量与 podinfo 具有的副本数量相同
一旦新 Pod 准备就绪,原始部署将缩减为零。
这提供了由 Flagger 作为实现细节管理的部署,并维护您的原始配置文件和工作流。
看到以下行后,一切都已设置:

0s          Normal    Synced                   canary/podinfo                          Initialization done! podinfo.test

除了托管部署之外,还创建了一些服务来协调应用程序的新旧版本之间的路由流量。
这些可以使用 kubectl -n test get svc 查看,应该如下所示:

NAME                 TYPE        CLUSTER-IP    EXTERNAL-IP   PORT(S)    AGE
frontend             ClusterIP   10.7.251.33   <none>        8080/TCP   96m
podinfo              ClusterIP   10.7.252.86   <none>        9898/TCP   96m
podinfo-canary       ClusterIP   10.7.245.17   <none>        9898/TCP   23m
podinfo-primary      ClusterIP   10.7.249.63   <none>        9898/TCP   23m

此时,拓扑看起来有点像:

本指南没有涉及 Flagger 提供的所有功能。
如果您有兴趣将 Canary 版本与 HPA 相结合、
处理自定义指标或进行其他类型的版本发布
(例如 A/B 测试),请务必阅读文档。

开始推出(rollout)

作为一个系统,Kubernetes resources 有两个主要部分:spec 和 status。
当控制器看到 spec 时,它会尽其所能使当前系统的 status 与 spec 相匹配。
通过部署,如果任何 pod 规范配置发生更改,控制器将启动 rollout。
默认情况下,部署控制器(deployment controller)将协调滚动更新(rolling
update)。

在这个例子中,Flagger 会注意到部署的规范(spec)发生了变化,
并开始编排金丝雀部署(canary rollout)。
要启动此过程,您可以通过运行以下命令将镜像更新为新版本:

kubectl -n test set image deployment/podinfo \
  podinfod=quay.io/stefanprodan/podinfo:1.7.1

对 pod 规范的任何修改(例如更新环境变量或annotation)都会导致与更新 image 相同的行为。

更新时,金丝雀部署 (podinfo) 将扩大(scaled up)。
准备就绪后,Flagger 将开始逐步更新 TrafficSplit CRD。
配置 stepWeight 为 10,每增加一次,podinfo 的权重就会增加 10。
对于每个周期,都会观察成功率,只要超过 99% 的阈值,Flagger 就会继续推出(rollout)。
要查看整个过程,请运行:

kubectl -n test get ev --watch

在发生更新时,资源和流量在较高级别将如下所示:

更新完成后,这张图会变回上一节的图。

您可以在 1.7.11.7.0 之间切换 image 标签以再次开始发布(rollout)。

Resource

canary resource 会更新当前状态和进度,你可以通过运行以下命令来查看:

watch kubectl -n test get canary

在幕后,Flagger 正在通过更新流量拆分 resource 来拆分主后端和金丝雀后端之间的流量。
要查看此配置在推出期间如何更改,请运行:

kubectl -n test get trafficsplit podinfo -o yaml

每次增加都会增加 podinfo-canary 的权重并减少 podinfo-primary 的权重。
一旦部署成功,podinfo-primary 的权重将重新设置为 100,
并且底层金丝雀部署(podinfo)将被缩减。

指标

随着流量从主要部署转移到金丝雀部署,Linkerd 提供了对请求目的地发生的事情的可见性。
这些指标显示后端实时接收流量并衡量成功率(success rate)、延迟(latencies)和吞吐量(throughput)。
在 CLI 中,您可以通过运行以下命令来观看:

watch linkerd viz -n test stat deploy --from deploy/load

对于更直观的东西,您可以使用仪表板。
通过运行 linkerd viz dashboard 启动它,
然后查看 podinfo 流量拆分的详细信息页面。

浏览器

再次访问 http://localhost:8080。
刷新页面将显示新版本和不同标题颜色之间的切换。
或者,运行 curl http://localhost:8080 将返回一个
类似于以下内容的 JSON 响应:

{
  "hostname": "podinfo-primary-74459c7db8-lbtxf",
  "version": "1.7.0",
  "revision": "4fc593f42c7cd2e7319c83f6bfd3743c05523883",
  "color": "blue",
  "message": "greetings from podinfo v1.7.0",
  "goos": "linux",
  "goarch": "amd64",
  "runtime": "go1.11.2",
  "num_goroutine": "6",
  "num_cpu": "8"
}

随着推出的继续,这种 response 会慢慢改变。

清理

要进行清理,请从集群中删除 Flagger 控制器并通过运行以下命令删除 test 命名空间:

kubectl delete -k github.com/fluxcd/flagger/kustomize/linkerd && \
  kubectl delete ns test
我是为少
微信:uuhells123
公众号:黑客下午茶
加我微信(互相学习交流),关注公众号(获取更多学习资料~)
这篇关于Linkerd 2.10(Step by Step)—2. 自动化的金丝雀发布的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!