前面我们实现了向量的加法,今天我们实现复杂一些的运算,矩阵的加法,即将矩阵对应位置上的元素进行相加,相当于向量加法的升级版本。不过需要注意的是,malloc时需要分配二维矩阵,这样才能使用A[i][j];
CPP实现起来的注意点在于二维数组的开辟,通过给二维数组的每一个指针赋值实现二维数据的访问,具体算法两层循环即可。
#include <stdlib.h> #include <iostream> #include <sys/time.h> #include <math.h> const int ROWS=1024; const int COLS=1024; using namespace std; int main() { struct timeval start, end; gettimeofday( &start, NULL ); int *A, **A_ptr, *B, **B_ptr, *C, **C_ptr; int total_size = ROWS*COLS*sizeof(int); A = (int*)malloc(total_size); B = (int*)malloc(total_size); C = (int*)malloc(total_size); A_ptr = (int**)malloc(ROWS*sizeof(int*)); B_ptr = (int**)malloc(ROWS*sizeof(int*)); C_ptr = (int**)malloc(ROWS*sizeof(int*)); //CPU一维数组初始化 for(int i=0;i<ROWS*COLS;i++) { A[i] = 80; B[i] = 20; } for(int i=0;i<ROWS;i++) { A_ptr[i] = A + COLS*i; B_ptr[i] = B + COLS*i; C_ptr[i] = C + COLS*i; } for(int i=0;i<ROWS;i++) for(int j=0;j<COLS;j++) { C_ptr[i][j] = A_ptr[i][j] + B_ptr[i][j]; } //检查结果 int max_error = 0; for(int i=0;i<ROWS*COLS;i++) { //cout << C[i] << endl; max_error += abs(100-C[i]); } cout << "max_error is " << max_error <<endl; gettimeofday( &end, NULL ); int timeuse = 1000000 * ( end.tv_sec - start.tv_sec ) + end.tv_usec - start.tv_usec; cout << "total time is " << timeuse/1000 << "ms" <<endl; return 0; }
运行时间为19ms,对于1024*1024的矩阵,这已经足够快。
CUDA版本与CPU版本基本类似,在核函数中则基本与向量的加法基本类似,只不过一维数据变成了二维。
#include "cuda_runtime.h" #include "device_launch_parameters.h" #include <sys/time.h> #include <stdio.h> #include <math.h> #define Row 1024 #define Col 1024 __global__ void addKernel(int **C, int **A, int ** B) { int idx = threadIdx.x + blockDim.x * blockIdx.x; int idy = threadIdx.y + blockDim.y * blockIdx.y; if (idx < Col && idy < Row) { C[idy][idx] = A[idy][idx] + B[idy][idx]; } } int main() { struct timeval start, end; gettimeofday( &start, NULL ); int **A = (int **)malloc(sizeof(int*) * Row); int **B = (int **)malloc(sizeof(int*) * Row); int **C = (int **)malloc(sizeof(int*) * Row); int *dataA = (int *)malloc(sizeof(int) * Row * Col); int *dataB = (int *)malloc(sizeof(int) * Row * Col); int *dataC = (int *)malloc(sizeof(int) * Row * Col); int **d_A; int **d_B; int **d_C; int *d_dataA; int *d_dataB; int *d_dataC; //malloc device memory cudaMalloc((void**)&d_A, sizeof(int **) * Row); cudaMalloc((void**)&d_B, sizeof(int **) * Row); cudaMalloc((void**)&d_C, sizeof(int **) * Row); cudaMalloc((void**)&d_dataA, sizeof(int) *Row*Col); cudaMalloc((void**)&d_dataB, sizeof(int) *Row*Col); cudaMalloc((void**)&d_dataC, sizeof(int) *Row*Col); //set value for (int i = 0; i < Row*Col; i++) { dataA[i] = 90; dataB[i] = 10; } //将主机指针A指向设备数据位置,目的是让设备二级指针能够指向设备数据一级指针 //A 和 dataA 都传到了设备上,但是二者还没有建立对应关系 for (int i = 0; i < Row; i++) { A[i] = d_dataA + Col * i; B[i] = d_dataB + Col * i; C[i] = d_dataC + Col * i; } cudaMemcpy(d_A, A, sizeof(int*) * Row, cudaMemcpyHostToDevice); cudaMemcpy(d_B, B, sizeof(int*) * Row, cudaMemcpyHostToDevice); cudaMemcpy(d_C, C, sizeof(int*) * Row, cudaMemcpyHostToDevice); cudaMemcpy(d_dataA, dataA, sizeof(int) * Row * Col, cudaMemcpyHostToDevice); cudaMemcpy(d_dataB, dataB, sizeof(int) * Row * Col, cudaMemcpyHostToDevice); dim3 threadPerBlock(16, 16); dim3 blockNumber( (Col + threadPerBlock.x - 1)/ threadPerBlock.x, (Row + threadPerBlock.y - 1) / threadPerBlock.y ); printf("Block(%d,%d) Grid(%d,%d).\n", threadPerBlock.x, threadPerBlock.y, blockNumber.x, blockNumber.y); addKernel << <blockNumber, threadPerBlock >> > (d_C, d_A, d_B); //拷贝计算数据-一级数据指针 cudaMemcpy(dataC, d_dataC, sizeof(int) * Row * Col, cudaMemcpyDeviceToHost); int max_error = 0; for(int i=0;i<Row*Col;i++) { //printf("%d\n", dataC[i]); max_error += abs(100-dataC[i]); } //释放内存 free(A); free(B); free(C); free(dataA); free(dataB); free(dataC); cudaFree(d_A); cudaFree(d_B); cudaFree(d_C); cudaFree(d_dataA); cudaFree(d_dataB); cudaFree(d_dataC); printf("max_error is %d\n", max_error); gettimeofday( &end, NULL ); int timeuse = 1000000 * ( end.tv_sec - start.tv_sec ) + end.tv_usec - start.tv_usec; printf("total time is %d ms\n", timeuse/1000); return 0; }
这里需要注意的是,dim3 threadPerBlock(16, 16)这里采用了二维的线程,那么对应的threadIdx也为二维的。
dim3则为英伟达内置的三维数据类型,即英伟达认为每个grid,或者是thread都应当是三维的,尽管有些维度还未实现。
运行结果依然比CPU版本慢,原因还是核函数过于简单,以至于线程调度占据了更多的时间。