C/C++教程

Hadoop支持的文件格式之SequenceFile

本文主要是介绍Hadoop支持的文件格式之SequenceFile,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

文章目录

  • 0x00 文章内容
  • 0x01 SequenceFile格式概念
          • 1. SequenceFile是啥
  • 0x02 编码实现
          • 1. 写文件完整代码
          • 2. 读文件完整代码
          • 3. 写文件完整代码(HDFS)
          • 4. 读文件完整代码(HDFS)
  • 0x03 校验结果
          • 1. 启动集群
          • 2. 执行写SequenceFile文件格式代码
          • 3. 执行读SequenceFile文件格式代码
          • 4. 执行写SequenceFile文件格式代码(HDFS)
          • 5. 执行读SequenceFile文件格式代码(HDFS)
  • 0xFF 总结

0x00 文章内容

Hadoop支持的四种常用的文件格式:Text(csv)ParquetAvro以及SequenceFile,非常关键!

0x01 SequenceFile格式概念
1. SequenceFile是啥

二进制格式。

0x02 编码实现
1. 写文件完整代码
package com.shaonaiyi.hadoop.filetype.sequence;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.SequenceFile;
import org.apache.hadoop.io.Text;

import java.io.IOException;
import java.net.URI;

/**
 * @Author shaonaiyi@163.com
 * @Date 2019/12/20 11:27
 * @Description Hadoop支持的文件格式之写Sequence
 */
public class SequenceFileWriter {

    private static final String[] DATA = {
            "shao, naiyi, bigdata, hadoop",
            "naiyi, bigdata, spark",
            "yi, two, a good man"
    };
    public static void main(String[] args) throws IOException {
        String uri = "hdfs://master:9999/user/hadoop-sny/mr/filetype/sequence.seq";

        Configuration configuration = new Configuration();
        FileSystem fs = FileSystem.get(URI.create(uri), configuration);
        Path path = new Path(uri);

        IntWritable key = new IntWritable();
        Text value = new Text();
        SequenceFile.Writer writer = null;
        try {
            writer = SequenceFile.createWriter(configuration,
                    SequenceFile.Writer.file(path), SequenceFile.Writer.keyClass(key.getClass()),
                    SequenceFile.Writer.valueClass(value.getClass()));

            for (int i = 0; i < 100; i++) {
                key.set(100 -i);
                value.set(DATA[i % DATA.length]);
                System.out.printf("[%s]\t%s\t%s\n", writer.getLength(), key, value);
                writer.append(key, value);
            }
        } finally {
            writer.close();
        }

    }

}

代码解读:根据配置文件、文件路径、key类型、value类型此四个参数构建SequenceFile的Writer对象,然后循环append进key和value

2. 读文件完整代码
package com.shaonaiyi.hadoop.filetype.sequence;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.SequenceFile;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.util.ReflectionUtils;

import java.io.IOException;
import java.net.URI;
/**
 * @Author shaonaiyi@163.com
 * @Date 2019/12/20 11:28
 * @Description Hadoop支持的文件格式之读Sequence
 */
public class SequenceFileReader {

    public static void main(String[] args) throws IOException {
        String uri = "hdfs://master:9999/user/hadoop-sny/mr/filetype/sequence.seq";

        Configuration configuration = new Configuration();
        FileSystem fs = FileSystem.get(URI.create(uri), configuration);
        Path path = new Path(uri);

        SequenceFile.Reader reader = null;

        try {
            reader = new SequenceFile.Reader(configuration, SequenceFile.Reader.file(path));
            Writable key = (Writable)ReflectionUtils.newInstance(reader.getKeyClass(), configuration);
            Writable value = (Writable)ReflectionUtils.newInstance(reader.getValueClass(), configuration);

            long position = reader.getPosition();

            while (reader.next(key, value)) {
                String syncSeen = reader.syncSeen() ? "*" : "";
                System.out.printf("[%s%s]\t%s\t%s\n", position, syncSeen, key, value);
                position = reader.getPosition();
            }

        } finally {
            reader.close();
        }
    }

}
3. 写文件完整代码(HDFS)
package com.shaonaiyi.hadoop.filetype.sequence;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat;
import org.apache.hadoop.mapreduce.task.JobContextImpl;
import org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl;

import java.io.IOException;

/**
 * @Author shaonaiyi@163.com
 * @Date 2019/12/20 12:53
 * @Description Hadoop支持的文件格式之写Sequence(HDFS)
 */
public class MRSequenceFileWriter {

    public static void main(String[] args) throws IOException, IllegalAccessException, InstantiationException, ClassNotFoundException, InterruptedException {
        //1 构建一个job实例
        Configuration hadoopConf = new Configuration();
        Job job = Job.getInstance(hadoopConf);

        //2 设置job的相关属性
        job.setOutputKeyClass(LongWritable.class);
        job.setOutputValueClass(Text.class);
        job.setOutputFormatClass(SequenceFileOutputFormat.class);

        //3 设置输出路径
        FileOutputFormat.setOutputPath(job, new Path("hdfs://master:9999/user/hadoop-sny/mr/filetype/sequence"));

        //4 构建JobContext
        JobID jobID = new JobID("jobId", 123);
        JobContext jobContext = new JobContextImpl(job.getConfiguration(), jobID);

        //5 构建taskContext
        TaskAttemptID attemptId = new TaskAttemptID("attemptId", 123, TaskType.REDUCE, 0, 0);
        TaskAttemptContext hadoopAttemptContext = new TaskAttemptContextImpl(job.getConfiguration(), attemptId);

        //6 构建OutputFormat实例
        OutputFormat format = job.getOutputFormatClass().newInstance();

        //7 设置OutputCommitter
        OutputCommitter committer = format.getOutputCommitter(hadoopAttemptContext);
        committer.setupJob(jobContext);
        committer.setupTask(hadoopAttemptContext);

        //8 获取writer写数据,写完关闭writer
        RecordWriter<LongWritable, Text> writer = format.getRecordWriter(hadoopAttemptContext);
        String value = "shao";
        writer.write(new LongWritable(System.currentTimeMillis()), new Text(value));
        writer.close(hadoopAttemptContext);

        //9 committer提交job和task
        committer.commitTask(hadoopAttemptContext);
        committer.commitJob(jobContext);
    }

}
4. 读文件完整代码(HDFS)
package com.shaonaiyi.hadoop.filetype.sequence;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat;
import org.apache.hadoop.mapreduce.task.JobContextImpl;
import org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl;

import java.io.IOException;
import java.util.List;
import java.util.function.Consumer;
/**
 * @Author shaonaiyi@163.com
 * @Date 2019/12/20 14:17
 * @Description Hadoop支持的文件格式之读Sequence(HDFS)
 */
public class MRSequenceFileReader {

    public static void main(String[] args) throws IOException, IllegalAccessException, InstantiationException {
        //1 构建一个job实例
        Configuration hadoopConf = new Configuration();

        Job job = Job.getInstance(hadoopConf);

        //2 设置需要读取的文件全路径
        FileInputFormat.setInputPaths(job, "hdfs://master:9999/user/hadoop-sny/mr/filetype/sequence");

        //3 获取读取文件的格式
        SequenceFileInputFormat inputFormat = SequenceFileInputFormat.class.newInstance();

        //4 获取需要读取文件的数据块的分区信息
        //4.1 获取文件被分成多少数据块了
        JobID jobID = new JobID("jobId", 123);
        JobContext jobContext = new JobContextImpl(job.getConfiguration(), jobID);

        List<InputSplit> inputSplits = inputFormat.getSplits(jobContext);

        //读取每一个数据块的数据
        inputSplits.forEach(new Consumer<InputSplit>() {
            @Override
            public void accept(InputSplit inputSplit) {
                TaskAttemptID attemptId = new TaskAttemptID("jobTrackerId", 123, TaskType.MAP, 0, 0);
                TaskAttemptContext hadoopAttemptContext = new TaskAttemptContextImpl(job.getConfiguration(), attemptId);
                RecordReader<LongWritable, Text> reader = null;
                try {
                    reader = inputFormat.createRecordReader(inputSplit, hadoopAttemptContext);
                    reader.initialize(inputSplit, hadoopAttemptContext);
                    while (reader.nextKeyValue()) {
                        System.out.println(reader.getCurrentKey());
                        System.out.println(reader.getCurrentValue());
                    }
                    reader.close();
                } catch (IOException e) {
                    e.printStackTrace();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        });

    }

}
0x03 校验结果
1. 启动集群

a. 启动HDFS集群,
start-dfs.sh

2. 执行写SequenceFile文件格式代码

a. 直接在Win上执行,控制台会显示结果:
在这里插入图片描述
然后去集群也可以查看到结果:

hadoop fs -ls hdfs://master:9999/user/hadoop-sny/mr/filetype/
hadoop fs -cat hdfs://master:9999/user/hadoop-sny/mr/filetype/sequence.seq

在这里插入图片描述
在这里插入图片描述
b. 其实,还可以通过如下命令以Text格式查看二进制文件

hadoop fs -text hdfs://master:9999/user/hadoop-sny/mr/filetype/sequence.seq

在这里插入图片描述
注意,此处控制台打印的日志与写进文件的内容不一样,所以看到控制台其实是多打印了writer.getLength()

System.out.printf("[%s]\t%s\t%s\n", writer.getLength(), key, value);

PS:如果报权限错误:

Exception in thread "main" org.apache.hadoop.security.AccessControlException: Permission denied: user=Administrator, access=WRITE, inode="/user/hadoop-sny":hadoop-sny:supergroup:drwxr-xr-x

解决方案:需要去集群里修改权限

hadoop fs -mkdir -p hdfs://master:9999/user/hadoop-sny/mr/filetype
hadoop fs -chmod 757 hdfs://master:9999/user/hadoop-sny/mr/filetype
3. 执行读SequenceFile文件格式代码

a. 也可以得到相应的结果
在这里插入图片描述

4. 执行写SequenceFile文件格式代码(HDFS)
hadoop fs -ls hdfs://master:9999/user/hadoop-sny/mr/filetype/

在这里插入图片描述
在这里插入图片描述

5. 执行读SequenceFile文件格式代码(HDFS)

a. 可以看到代码里写进去的结果
在这里插入图片描述
对应的打印代码为:

    String value = "shao";
    writer.write(new LongWritable(System.currentTimeMillis()), new Text(value));
0xFF 总结
  1. Hadoop支持的文件格式系列:
    Hadoop支持的文件格式之Text
    Hadoop支持的文件格式之Avro
    Hadoop支持的文件格式之Parquet
    Hadoop支持的文件格式之SequenceFile
  2. 项目实战中,文章:网站用户行为分析项目之会话切割(二)中使用的存储格式是Parquet

作者简介:邵奈一
全栈工程师、市场洞察者、专栏编辑
| 公众号 | 微信 | 微博 | CSDN | 简书 |

福利:
邵奈一的技术博客导航
邵奈一 原创不易,如转载请标明出处。


这篇关于Hadoop支持的文件格式之SequenceFile的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!