摘要:ES 集群是进行大数据存储和分析,快速检索的利器,本文简述了 ES 的集群架构,并提供了在 Kubernetes 中快速部署 ES 集群的样例;对 ES 集群的监控运维工具进行了介绍,并提供了部分问题定位经验,最后总结了常用 ES 集群的 API 调用方法。
本文分享自华为云社区《Kubernetes中部署ES集群及运维》,原文作者:minucas。
ES 集群分为单点模式和集群模式,其中单点模式一般在生产环境不推荐使用,推荐使用集群模式部署。其中集群模式又分为 Master 节点与 Data 节点由同一个节点承担,以及 Master 节点与 Data 节点由不同节点承担的部署模式。Master 节点与 Data 节点分开的部署方式可靠性更强。下图为 ES 集群的部署架构图:
1、采用 k8s statefulset 部署,可快速的进行扩缩容 es 节点,本例子采用 3 Master Node + 12 Data Node 方式部署
2、通过 k8s service 配置了对应的域名和服务发现,确保集群能自动联通和监控
kubectl -s http://ip:port create -f es-master.yaml kubectl -s http://ip:port create -f es-data.yaml kubectl -s http://ip:port create -f es-service.yaml
apiVersion: apps/v1 kind: StatefulSet metadata: labels: addonmanager.kubernetes.io/mode: Reconcile k8s-app: es kubernetes.io/cluster-service: "true" version: v6.2.5 name: es-master namespace: default spec: podManagementPolicy: OrderedReady replicas: 3 revisionHistoryLimit: 10 selector: matchLabels: k8s-app: es version: v6.2.5 serviceName: es template: metadata: labels: k8s-app: camp-es kubernetes.io/cluster-service: "true" version: v6.2.5 spec: containers: - env: - name: NAMESPACE valueFrom: fieldRef: apiVersion: v1 fieldPath: metadata.namespace - name: ELASTICSEARCH_SERVICE_NAME value: es - name: NODE_MASTER value: "true" - name: NODE_DATA value: "false" - name: ES_HEAP_SIZE value: 4g - name: ES_JAVA_OPTS value: -Xmx4g -Xms4g - name: cluster.name value: es image: elasticsearch:v6.2.5 imagePullPolicy: Always name: es ports: - containerPort: 9200 hostPort: 9200 name: db protocol: TCP - containerPort: 9300 hostPort: 9300 name: transport protocol: TCP resources: limits: cpu: "6" memory: 12Gi requests: cpu: "4" memory: 8Gi securityContext: capabilities: add: - IPC_LOCK - SYS_RESOURCE volumeMounts: - mountPath: /data name: es - command: - /bin/elasticsearch_exporter - -es.uri=http://localhost:9200 - -es.all=true image: elasticsearch_exporter:1.0.2 imagePullPolicy: IfNotPresent livenessProbe: failureThreshold: 3 httpGet: path: /health port: 9108 scheme: HTTP initialDelaySeconds: 30 periodSeconds: 10 successThreshold: 1 timeoutSeconds: 10 name: es-exporter ports: - containerPort: 9108 hostPort: 9108 protocol: TCP readinessProbe: failureThreshold: 3 httpGet: path: /health port: 9108 scheme: HTTP initialDelaySeconds: 10 periodSeconds: 10 successThreshold: 1 timeoutSeconds: 10 resources: limits: cpu: 100m memory: 128Mi requests: cpu: 25m memory: 64Mi securityContext: capabilities: drop: - SETPCAP - MKNOD - AUDIT_WRITE - CHOWN - NET_RAW - DAC_OVERRIDE - FOWNER - FSETID - KILL - SETGID - SETUID - NET_BIND_SERVICE - SYS_CHROOT - SETFCAP readOnlyRootFilesystem: true dnsPolicy: ClusterFirst initContainers: - command: - /sbin/sysctl - -w - vm.max_map_count=262144 image: alpine:3.6 imagePullPolicy: IfNotPresent name: elasticsearch-logging-init resources: {} securityContext: privileged: true restartPolicy: Always schedulerName: default-scheduler securityContext: {} volumes: - hostPath: path: /Data/es type: DirectoryOrCreate name: es
apiVersion: apps/v1 kind: StatefulSet metadata: labels: addonmanager.kubernetes.io/mode: Reconcile k8s-app: es kubernetes.io/cluster-service: "true" version: v6.2.5 name: es-data namespace: default spec: podManagementPolicy: OrderedReady replicas: 12 revisionHistoryLimit: 10 selector: matchLabels: k8s-app: es version: v6.2.5 serviceName: es template: metadata: labels: k8s-app: es kubernetes.io/cluster-service: "true" version: v6.2.5 spec: containers: - env: - name: NAMESPACE valueFrom: fieldRef: apiVersion: v1 fieldPath: metadata.namespace - name: ELASTICSEARCH_SERVICE_NAME value: es - name: NODE_MASTER value: "false" - name: NODE_DATA value: "true" - name: ES_HEAP_SIZE value: 16g - name: ES_JAVA_OPTS value: -Xmx16g -Xms16g - name: cluster.name value: es image: elasticsearch:v6.2.5 imagePullPolicy: Always name: es ports: - containerPort: 9200 hostPort: 9200 name: db protocol: TCP - containerPort: 9300 hostPort: 9300 name: transport protocol: TCP resources: limits: cpu: "8" memory: 32Gi requests: cpu: "7" memory: 30Gi securityContext: capabilities: add: - IPC_LOCK - SYS_RESOURCE volumeMounts: - mountPath: /data name: es - command: - /bin/elasticsearch_exporter - -es.uri=http://localhost:9200 - -es.all=true image: elasticsearch_exporter:1.0.2 imagePullPolicy: IfNotPresent livenessProbe: failureThreshold: 3 httpGet: path: /health port: 9108 scheme: HTTP initialDelaySeconds: 30 periodSeconds: 10 successThreshold: 1 timeoutSeconds: 10 name: es-exporter ports: - containerPort: 9108 hostPort: 9108 protocol: TCP readinessProbe: failureThreshold: 3 httpGet: path: /health port: 9108 scheme: HTTP initialDelaySeconds: 10 periodSeconds: 10 successThreshold: 1 timeoutSeconds: 10 resources: limits: cpu: 100m memory: 128Mi requests: cpu: 25m memory: 64Mi securityContext: capabilities: drop: - SETPCAP - MKNOD - AUDIT_WRITE - CHOWN - NET_RAW - DAC_OVERRIDE - FOWNER - FSETID - KILL - SETGID - SETUID - NET_BIND_SERVICE - SYS_CHROOT - SETFCAP readOnlyRootFilesystem: true dnsPolicy: ClusterFirst initContainers: - command: - /sbin/sysctl - -w - vm.max_map_count=262144 image: alpine:3.6 imagePullPolicy: IfNotPresent name: elasticsearch-logging-init resources: {} securityContext: privileged: true restartPolicy: Always schedulerName: default-scheduler securityContext: {} volumes: - hostPath: path: /Data/es type: DirectoryOrCreate name: es
apiVersion: v1 kind: Service metadata: labels: addonmanager.kubernetes.io/mode: Reconcile k8s-app: es kubernetes.io/cluster-service: "true" kubernetes.io/name: Elasticsearch name: es namespace: default spec: clusterIP: None ports: - name: es port: 9200 protocol: TCP targetPort: 9200 - name: exporter port: 9108 protocol: TCP targetPort: 9108 selector: k8s-app: es sessionAffinity: None type: ClusterIP
工欲善其事必先利其器,中间件的运维首先要有充分的监控手段,ES 集群的监控常用的三种监控手段:exporter、eshead、kopf,由于 ES 集群是采用 k8s 架构部署,很多特性都会结合 k8s 来开展
通过 k8s 部署 es-exporter 将监控 metrics 导出,prometheus 采集监控数据,grafana 定制 dashboard 展示
github 地址:github.com/mobz/elasti…
ES-head 组件可通过Chrome浏览器应用商店搜索安装,使用 Chrome 插件可查看 ES 集群的情况
github 地址:github.com/lmenezes/ce…
资源配置:关注 ES 的 CPU、Memory 以及 Heap Size,Xms Xmx 的配置,建议如机器是 8u32g 内存的情况下,堆内存和 Xms Xmx 配置为 50%,官网建议单个 node 的内存不要超过 64G
索引配置:由于 ES 检索通过索引来定位,检索的时候 ES 会将相关的索引数据装载到内存中加快检索速度,因此合理的对索引进行设置对 ES 的性能影响很大,当前我们通过按日期创建索引的方法(个别数据量小的可不分割索引)
CPU 和 Load 比较高的节点重点关注,可能的原因是 shard 分配不均匀,此时可手动讲不均衡的 shard relocate 一下
shard 配置最好是 data node 数量的整数倍,shard 数量不是越多越好,应该按照索引的数据量合理进行分片,确保每个 shard 不要超过单个 data node 分配的堆内存大小,比如数据量最大的 index 单日 150G 左右,分为 24 个 shard,计算下来单个 shard 大小大概 6-7G 左右
副本数建议为 1,副本数过大,容易导致数据的频繁 relocate,加大集群负载
curl -X DELETE "10.64.xxx.xx:9200/szv-prod-ingress-nginx-2021.05.01"
索引名可使用进行正则匹配进行批量删除,如:-2021.05.*
在定位问题的时候发现节点数据 shard 已经移走但是节点负载一直下不去,登入节点使用 top 命令发现节点 kubelet 的 cpu 占用非常高,重启 kubelet 也无效,重启节点后负载才得到缓解
ES 集群的健康状态分为三种:Green、Yellow、Red。
Green(绿色):集群健康;
Yellow(黄色):集群非健康,但在负载允许范围内可自动 rebalance 恢复;
Red(红色):集群存在问题,有部分数据未就绪,至少有一个主分片未分配成功。
可通过 API 查询集群的健康状态及未分配的分片:
GET _cluster/health { "cluster_name": "camp-es", "status": "green", "timed_out": false, "number_of_nodes": 15, "number_of_data_nodes": 12, "active_primary_shards": 2176, "active_shards": 4347, "relocating_shards": 0, "initializing_shards": 0, "unassigned_shards": 0, "delayed_unassigned_shards": 0, "number_of_pending_tasks": 0, "number_of_in_flight_fetch": 0, "task_max_waiting_in_queue_millis": 0, "active_shards_percent_as_number": 100 }
GET /_cat/pending_tasks
其中 priority 字段则表示该 task 的优先级
GET _cluster/allocation/explain
其中 reason 字段表示哪种原因导致的分片未分配,detail 表示详细未分配的原因
GET /_cat/indices?v&health=red
curl -s http://ip:port/_cat/shards | grep UNASSIGNED
POST _cluster/reroute?pretty" -d '{ "commands" : [ { "allocate_stale_primary" : { "index" : "xxx", "shard" : 1, "node" : "12345...", "accept_data_loss": true } } ] }
其中 node 为 es 集群节点的 id,可以通过 curl ‘ip:port/_node/process?pretty’ 进行查询
PUT /szv_ingress_*/settings { "index": { "number_of_replicas": 1 } }
点击关注,第一时间了解华为云新鲜技术~