import numpy as np # x = np.array([1, 2, 3]) # x1 = x.reshape((1, 3)) # x2 = x.reshape((3, 1)) # print(x, '\n', x1, '\n', x2,'\n') t = np.arange(0, 16) # print(t) t1 = t.reshape(2, 8) # print(t1) # t2 = t1.reshape(4, 4) # print(t2) # t3 = t1.reshape(4, 4, order='F') # print(t3) t4 = t1.reshape(4, 4, order='C') # print(t4) # print('以 C 风格顺序排序:') # for x in np.nditer(t4, order='C'): # print(x, end=", ") # print('\n') # print('以 F 风格顺序排序:') # for x in np.nditer(t4, order='F'): # print(x, end=", ") # print('\n' + "修改元素:") # t4[1, 1] = 100 # print(t4) # t4[0] = 100 # print(t4) # t4[2] = 100, 200, 300, 400 # print(t4) # print("转置数组:") # t5 = np.transpose(t4) # print(t5) # print("连接数组:") # hstack 水平堆叠序列中的数组(列方向) np.hstack([x, y] 等价于[x y] 要求x y行相同 # vstack 竖直堆叠序列中的数组(行方向) np.vstack([x, y] 等价于[x # y] 要求x y列相同 # x = np.array([1, 2, 3]) # y = np.array([4, 5, 6]) # z = np.random.randint(1, 10, (3, 3)) # print("x = ", x, '\n', "y = ", y, '\n', "z = ", z) # # print("行方向连接,相当于在末尾添加一行", '\n', np.vstack([x, y])) # # print("列方向连接", '\n', np.hstack([x, y])) #同样你也可以插入一列,或者末尾添加一列,或者删除一列 # # print("行方向连接", '\n', np.vstack([x, z])) # print("行方向连接,相当于插入一行", '\n', np.vstack([z[0, :], x, z[1:, :]])) # x = x.reshape((3,1)) # print("列方向连接,相当于插入一列", '\n', np.hstack([z[:, 0:1], x, z[:, 1:]])) # print(z[:, 0]) # print(z[:, 0:1]) #z[:, 0] 列向量他是一维 #z[:, 0:1] 是个二维的 # k = np.random.randint(1, 10, (3, 3)) # print(k) # print("行方向连接,相当于删除一行", '\n', np.vstack([k[0, :], k[2, :]])) # print("列方向连接,相当于删除一列", '\n', np.hstack([k[:, 1:2], k[:, 2:]])) # print("去重") # uu = np.random.randint(1, 10, (3, 3)) # print(uu) # ff = np.unique(uu) # print("去重", '\n', ff) print("排序") kk = np.random.randint(1, 10, (3, 3)) print(kk) hh = np.sort(kk) # axis=0 按列排序,axis=1 按行排序,默认按行排 hh1 = np.sort(kk, axis=0 ) print("按行排:", '\n', hh) print("按列排:", '\n', hh1) index = np.argsort(kk) print("按行排的下标索引:", '\n', index)
哔哩哔哩视频链接 https://www.bilibili.com/video/BV1Lf4y197ov
[video(video-56zbYdHZ-1597199169084)(type-bilibili)(url-https://player.bilibili.com/player.html?aid=286671135)(image-https://ss.csdn.net/p?http://i0.hdslb.com/bfs/archive/6be84d909340a548a647513b8eeb3c286f622cfb.jpg)(title-python numpy库学习之数组变形,拼接)]