归并排序(MERGE-SORT)是利用归并的思想实现的排序方法,该算法采用经典的分治(divide-and-conquer)策略(分治法将问题分(divide)成一些小的问题然后递归求解,而治(conquer)的阶段则将分的阶段得到的各答案"修补"在一起,即分而治之)。
如有n个记录的文件的直接选择排序可经过n-1趟直接选择排序得到有序结果:
这样,n个记录的文件的直接选择排序可经过n-1趟直接选择排序得到有序结果。
可以看到这种结构很像一棵完全二叉树,本文的归并排序我们采用递归去实现(也可采用迭代的方式去实现)。分阶段可以理解为就是递归拆分子序列的过程,递归深度为log2n。
再来看看治阶段,我们需要将两个已经有序的子序列合并成一个有序序列,比如上图中的最后一次合并,要将[4,5,7,8]和[1,2,3,6]两个已经有序的子序列,合并为最终序列[1,2,3,4,5,6,7,8],来看下实现步骤。
package sortdemo; import java.util.Arrays; /** * Created by chengxiao on 2016/12/8. */ public class MergeSort { public static void main(String []args){ int []arr = {9,8,7,6,5,4,3,2,1}; sort(arr); System.out.println(Arrays.toString(arr)); } public static void sort(int []arr){ int []temp = new int[arr.length];//在排序前,先建好一个长度等于原数组长度的临时数组,避免递归中频繁开辟空间 sort(arr,0,arr.length-1,temp); } private static void sort(int[] arr,int left,int right,int []temp){ if(left<right){ int mid = (left+right)/2; sort(arr,left,mid,temp);//左边归并排序,使得左子序列有序 sort(arr,mid+1,right,temp);//右边归并排序,使得右子序列有序 merge(arr,left,mid,right,temp);//将两个有序子数组合并操作 } } private static void merge(int[] arr,int left,int mid,int right,int[] temp){ int i = left;//左序列指针 int j = mid+1;//右序列指针 int t = 0;//临时数组指针 while (i<=mid && j<=right){ if(arr[i]<=arr[j]){ temp[t++] = arr[i++]; }else { temp[t++] = arr[j++]; } } while(i<=mid){//将左边剩余元素填充进temp中 temp[t++] = arr[i++]; } while(j<=right){//将右序列剩余元素填充进temp中 temp[t++] = arr[j++]; } t = 0; //将temp中的元素全部拷贝到原数组中 while(left <= right){ arr[left++] = temp[t++]; } } }
执行结果
[1, 2, 3, 4, 5, 6, 7, 8, 9]
假设待排序数组为array = {94,12,34,76,26,9,0,37,55,76,37,5,68,83,90,37,12,65,76,49},数组大小为20,我们以该数组为例,执行归并排序的具体过程,如下所示:
[94,12,34,76,26,9,0,37,55,76, 37,5,68,83,90,37,12,65,76,49] [94,12,34,76,26, 9,0,37,55,76] [94,12,34, 76,26] [94,12, 34] [94, 12] {12, 94} {12,34, 94} [76, 26] {26, 76} {12,26,34, 76,94} [9,0,37, 55,76] [9,0, 37] [9, 0] {0, 9} {0,9, 37} [55, 76] {55, 76} {0,9,37, 55,76} {0,9,12,26,34, 37,55,76,76,94} [37,5,68,83,90, 37,12,65,76,49] [37,5,68, 83,90] [37,5, 68] [37, 5] {5, 37} {5,37, 68} [83, 90] {83, 90} {5,37,68, 83,90} [37,12,65, 76,49] [37,12, 65] [37, 12 ] {12, 37 } {12,37, 65 } [76, 49 ] {49, 76} {12,37,49, 65,76} {5,12,37,37,49, 65,68,76,83,90} {0,5,9,12,12,26,34,37,37,37, 49,55,65,68,76,76,76,83,90,94}
上面示例的排序过程中,方括号表示“分解”操作过程中,将原始数组进行递归分解,直到不能再继续分割为止;花括号表示“归并”的过程,将上一步分解后的数组进行归并排序。因为采用递归分治的策略,所以从上面的排序过程可以看到,“分解”和“归并”交叉出现。
归并排序是稳定排序,它也是一种十分高效的排序,能利用完全二叉树特性的排序一般性能都不会太差。java中Arrays.sort()采用了一种名为TimSort的排序算法,就是归并排序的优化版本。从上文的图中可看出,每次合并操作的平均时间复杂度为O(n),而完全二叉树的深度为|log2n|。总的平均时间复杂度为O(nlogn)。而且,归并排序的最好,最坏,平均时间复杂度均为O(nlogn)。