题目链接
只会后缀数组+暴躁莫队套set\(n \sqrt{n} \log n\)但绝对跑不过去。
正解是SAM + set启发式合并 + 二维数点/ SAM + LCT
但是我只会第一种qwq
首先一个性质是两个前缀的最长公共后缀就是他们再parent树上的LCA的len
那么我们考虑每个LCA的贡献。
把询问离线下来按右端点排序,对于当前点的子树中的点有一个显然的性质。
若存在四个点\(l, x, y, r\)满足\(l < x < y < r\),那么显然\(l, r\)这对点是没有意义的(因为每对点产生的贡献都相同)。也就说我们在处理子树的时候实际上有一堆点对用不到。我们可以通过set启发式合并来合并子树,也就是说我现在有一堆点集,然后我考虑加入一个新点之后哪些点对会有用,显然只有它与它的前驱/后继这两个点对是有用的。
因为合并的时候是启发式合并,所以总复杂度不会超过\(n \log^2 n\)
然后处理完之后就是一个二维数点取max问题了。
调起来有点自闭qwq
#include<bits/stdc++.h> #define Pair pair<int, int> #define MP(x, y) make_pair(x, y) #define fi first #define se second #define pb push_back //#define int long long #define LL long long #define ull unsigned long long #define Fin(x) {freopen(#x".in","r",stdin);} #define Fout(x) {freopen(#x".out","w",stdout);} using namespace std; const int MAXN = 1e6 + 10, mod = 1e9 + 7, INF = 1e9 + 10; const double eps = 1e-9; template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;} template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;} template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;} template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);} template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;} template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;} template <typename A> inline void debug(A a){cout << a << '\n';} template <typename A> inline LL sqr(A x){return 1ll * x * x * x;} template <typename A, typename B> inline LL fp(A a, B p, int md = mod) {int b = 1;while(p) {if(p & 1) b = mul(b, a);a = mul(a, a); p >>= 1;}return b;} template <typename A> A inv(A x) {return fp(x, mod - 2);} inline int read() { char c = getchar(); int x = 0, f = 1; while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();} while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar(); return x * f; } int N, M, ans[MAXN]; char s[MAXN]; vector<Pair> Q[MAXN], P[MAXN]; vector<int> v[MAXN]; set<int> st[MAXN]; int ch[MAXN][2], len[MAXN], fa[MAXN], las = 1, root = 1, tot = 1; void insert(int x, int id) { int now = ++tot, pre = las; las = now; len[now] = len[pre] + 1; st[now].insert(id); for(; pre && !ch[pre][x]; pre = fa[pre]) ch[pre][x] = now; if(!pre) fa[now] = root; else { int q = ch[pre][x]; if(len[q] == len[pre] + 1) fa[now] = q; else { int nq = ++tot; fa[nq] = fa[q]; len[nq] = len[pre] + 1; memcpy(ch[nq], ch[q], sizeof(ch[q])); for(; pre && ch[pre][x] == q; pre = fa[pre]) ch[pre][x] = nq; fa[now] = fa[q] = nq; } } } void dfs(int x) { set<int> &S = st[x]; for(auto &to : v[x]) { dfs(to); set<int> &Sto = st[to]; if(Sto.size() > S.size()) swap(Sto, S); for(auto &nxt: Sto) { auto pos = S.insert(nxt).fi; if(pos != S.begin()) { auto pre = --pos; pos++; // printf("%d %d %d\n", *pos, *pre, len[x]); P[*pos].pb({*pre, len[x]}); } if((++pos) != S.end()) { pos--; auto nxt = ++pos; pos--; //printf("%d %d\n", *pos, *nxt); P[*nxt].pb({*pos, len[x]}); } S.erase(nxt); } for(auto &nxt: Sto) S.insert(nxt); } } void Build() { for(int i = 1; i <= tot; i++) v[fa[i]].push_back(i); dfs(1); for(int i = 1; i <= N; i++) sort(Q[i].begin(), Q[i].end()), sort(P[i].begin(), P[i].end()); } int mx[MAXN]; #define lb(x) (x & (-x)) void Add(int x, int val) { x = N - x + 1; while(x <= N) chmax(mx[x], val), x += lb(x); } int Query(int x) { x = N - x + 1; int ans = 0; while(x) chmax(ans, mx[x]), x -= lb(x); return ans; } void solve() { for(int i = 1; i <= N; i++) { int cur = Q[i].size() - 1; for(int j = P[i].size() - 1; j >= 0; j--) { while((~cur) && Q[i][cur].fi > P[i][j].fi) ans[Q[i][cur].se] = Query(Q[i][cur].fi), cur--; Add(P[i][j].fi, P[i][j].se); } while(~cur) ans[Q[i][cur].se] = Query(Q[i][cur].fi), cur--; } } signed main() { //freopen("a.in", "r", stdin); N = read(); M = read(); scanf("%s", s + 1); for(int i = 1; i <= N; i++) insert(s[i] - '0', i); for(int i = 1; i <= M; i++) { int l = read(), r = read(); Q[r].pb({l, i}); } Build(); solve(); for(int i = 1; i <= M; i++) cout << ans[i] << '\n'; return 0; }