Java教程

51nod“省选”模测第二场 B 异或约数和(数论分块)

本文主要是介绍51nod“省选”模测第二场 B 异或约数和(数论分块),对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

题意

题目链接

Sol

这题是来搞笑的吧。。

考虑一个数的贡献是\(O(\frac{N}{i})\)

直接数论分块。

#include<bits/stdc++.h> 
#define Pair pair<int, int>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
#define int long long 
#define LL long long 
#define ull unsigned long long 
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int MAXN = 1e6 + 10, mod = 1e9 + 7, INF = 1e9 + 10;
const double eps = 1e-9;
template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
template <typename A> inline void debug(A a){cout << a << '\n';}
template <typename A> inline LL sqr(A x){return 1ll * x * x;}
template <typename A, typename B> inline LL fp(A a, B p, int md = mod) {int b = 1;while(p) {if(p & 1) b = mul(b, a);a = mul(a, a); p >>= 1;}return b;}
template <typename A> A inv(A x) {return fp(x, mod - 2);}
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
int N;
int S(int n) {
    LL t= n&3;
    if (t&1) return t/2ull^1;
    return t/2ull^n;
}
signed main() {
	N = read();
	int ans = 0;
	for(int i = 1, nxt; i <= N; i = nxt + 1) {
		nxt = N / (N / i); 
		if((N / i) & 1) {
			ans ^= S(nxt) ^ S(i - 1);
		}
	}
	cout << ans;	
    return 0;
}
这篇关于51nod“省选”模测第二场 B 异或约数和(数论分块)的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!