题目链接
直接拿set维护\(li\)连续段。因为set内的区间互不相交,而且每个线段会被至多加入删除一次,所以复杂度是对的。
#include<bits/stdc++.h> #define Pair pair<int, int> #define MP make_pair #define fi first #define se second using namespace std; const int MAXN = 1e6 + 10, INF = 2147483646; inline int read() { char c = getchar(); int x = 0, f = 1; while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();} while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar(); return x * f; } int N, M, s[MAXN], f[MAXN], ll[MAXN], rr[MAXN]; #define ls k << 1 #define rs k << 1 | 1 void update(int k) { s[k] = s[ls] + s[rs]; } void ps(int k, int v) { if(v == 1) s[k] = rr[k] - ll[k] + 1; else s[k] = 0; f[k] = v; } void pushdown(int k) { if(f[k] == -1) return ; ps(ls, f[k]); ps(rs, f[k]); f[k] = -1; } void Build(int k, int l, int r) { ll[k] = l; rr[k] = r; if(l == r) return ; int mid = l + r >> 1; Build(ls, l, mid); Build(rs, mid + 1, r); } void Mem(int k, int l, int r, int ql, int qr, int val) { if(ql > qr) return ; if(ql <= l && r <= qr) {ps(k, val); return ;} int mid = l + r >> 1; pushdown(k); if(ql <= mid) Mem(ls, l, mid, ql, qr, val); if(qr > mid) Mem(rs, mid + 1, r, ql, qr, val); update(k); } int Query(int k, int l, int r, int ql, int qr) { if(ql > qr) return 0; int ans = 0; //cout << ans << '\n'; if(ql <= l && r <= qr) return s[k]; int mid = l + r >> 1; pushdown(k); if(ql <= mid) ans += Query(ls, l, mid, ql, qr); if(qr > mid) ans += Query(rs, mid + 1, r, ql, qr); return ans; } set<Pair> S[MAXN]; #define sit set<Pair>::iterator void Add(int l, int r, int x) { int pl = l, pr = r; set<Pair> &s = S[x]; sit it = s.lower_bound(MP(l, r)); Mem(1, 1, N, l, r, 1); if(it != s.begin()) { it--; if(it -> se > r) { Mem(1, 1, N, max(pl, it -> fi), min(pr, it -> se), 0); } if(it -> se >= l ) { l = min(l, it -> fi); r = max(r, it -> se); Mem(1, 1, N, max(pl, it -> fi), min(pr, it -> se), 0); s.erase(it++); } } it = s.lower_bound(MP(l, r)); while((it -> se >= l && it -> se <= r) || (it -> fi >= l && it -> fi <= r)) { l = min(l, it -> fi); r = max(r, it -> se); Mem(1, 1, N, max(pl, it -> fi), min(pr, it -> se), 0); s.erase(it++); } s.insert(MP(l, r)); } signed main() { // freopen("a.in", "r", stdin); N = read(); M = read(); Build(1, 1, N); for(int i = 1; i <= N; i++) S[i].insert(MP(INF, INF)); while(M--) { int opt = read(); if(opt == 1) { int xi = read(), val = read(), ki = read(); int l = max(1, xi - ki), r = min(N, xi + ki); Add(l, r, val); } else { int l = read(), r = read(); printf("%d\n", Query(1, 1, N, l, r)); } } return 0; }