求$(\sqrt{2} + \sqrt{3})^{2n} \pmod {1024}$
$n \leqslant 10^9$
看到题解的第一感受:这玩意儿也能矩阵快速幂???
是的,它能qwq。。。。
首先我们把$2$的幂乘进去,变成了
$(5 + 2\sqrt{6})^n$
设$f(n) = A_n + \sqrt{6} B_n$
那么$f(n+1) = (A_n + \sqrt{6} B_n ) * (5 + 2\sqrt{6})$
乘出来得到
$A_{n + 1} = 5 A_n + 12 B_n$
$B_{n + 1} = 2A_n + B B_n$
那么不难得到转移矩阵
$$\begin{pmatrix} 5 & 12 \\ 2 & 5 \end{pmatrix}$$
这样好像就能做了。。
但是实际上后我们最终会得到一个类似于$A_n + \sqrt{6}B_n$的东西,这玩意儿还是不能取模
考虑如何把$\sqrt{6}$的影响消掉。
$(5 + 2 \sqrt{6})^n = A_n + \sqrt{6}B_n$
$(5 - 2 \sqrt{6})^n = A_n - \sqrt{6}B_n$
相加得
$(5 + 2 \sqrt{6})^n + (5 - 2 \sqrt{6})^n = 2A_n$
考虑到$0 < (5 - 2\sqrt{6})^n < 1$
那么
$$\lfloor (5 + 2\sqrt{6})^n \rfloor = 2A_n - 1$$
做完啦qwq
#include#include#include#define Pair pair#define MP(x, y)#define fi first#define se second // #includeusing namespace std;#define LL long longconst LL MAXN = 101, mod = 1024; inline LL read() { char c = getchar(); LL x = 0, f = 1; while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();} while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar(); return x * f; }int T, N;struct Matrix { LL m[5][5], N; Matrix() {N = 2; memset(m, 0, sizeof(m));} Matrix operator * (const Matrix &rhs) const { Matrix ans; for(int k = 1; k <= N; k++) for(int i = 1; i <= N; i++) for(int j = 1; j <= N; j++) (ans.m[i][j] += 1ll * m[i][k] * rhs.m[k][j] % mod) % mod; return ans; } }; Matrix fp(Matrix a, int p) { Matrix base; base.m[1][1] = 1; base.m[2][2] = 1; while(p) { if(p & 1) base = base * a; a = a * a; p >>= 1; } return base; }int main() { T = read(); while(T--) { N = read(); Matrix a; a.m[1][1] = 5; a.m[1][2] = 12; a.m[2][1] = 2; a.m[2][2] = 5; a = fp(a, N - 1); LL ans = (5 * a.m[1][1] + 2 * a.m[1][2]) % mod; printf("%I64d\n", (2 * ans - 1) % mod); } return 0; }/**/