Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 20760 Accepted Submission(s):
6325
Input The input contains several test cases. Each test case describes a histogram and starts with an integer n, denoting the number of rectangles it is composed of. You may assume that 1 <= n <= 100000. Then follow n integers h1, ..., hn, where 0 <= hi <= 1000000000. These numbers denote the heights of the rectangles of the histogram in left-to-right order. The width of each rectangle is 1. A zero follows the input for the last test case.
Output For each test case output on a single line the area of the largest rectangle in the specified histogram. Remember that this rectangle must be aligned at the common base line.
Sample Input 7 2 1 4 5 1 3 3 4 1000 1000 1000 1000 0
Sample Output 8 4000
Source University of Ulm Local Contest 2003
Recommend LL | We have carefully selected several similar problems for you: 1505 1069 1087 1058 1176 一道挺裸的单调栈 我们预处理出每一个位置向左/向右第一个比他小的位置 然后统计答案,这样很显然是对的 时间复杂度$O(N)$
#include<cstdio> #define LL long long #define max(a,b) (a>b?a:b) #define min(a,b) (a<b?a:b) using namespace std; const int MAXN = 100001; LL a[MAXN]; int s[MAXN], top = 0; int L[MAXN], R[MAXN]; void clear() {top = 0;} int main() { //#ifdef WIN32 //freopen("a.in", "r", stdin); //#endif int N; while(~scanf("%d", &N) && N != 0) { clear(); s[0] = 0; for(int i = 1; i <= N; i++) scanf("%I64d",&a[i]); for(int i = 1; i <= N; i++) { while(top > 0 && a[i] <= a[ s[top] ]) top--; L[i] = min(s[top] + 1, i); s[++top] = i; } clear(); s[0] = N + 1; for(int i = N; i >= 1; i--) { while(top > 0 && a[i] <= a[ s[top] ]) top--; R[i] = max(s[top] - 1, i); s[++top] = i; } LL Ans = 0; for(int i = 1; i <= N; i++) Ans = max(Ans, (R[i] - L[i] + 1) * a[i] ); printf("%I64d\n",Ans); } return 0; }