<properties> <scala.version>2.11.8</scala.version> <scalikejdbc.version>3.3.2</scalikejdbc.version> </properties> <!-- 添加scalikejdbc依赖 --> <!-- https://mvnrepository.com/artifact/org.scalikejdbc/scalikejdbc --> <dependency> <groupId>org.scalikejdbc</groupId> <artifactId>scalikejdbc_2.11</artifactId> <version>${scalikejdbc.version}</version> </dependency> <dependency> <groupId>org.scalikejdbc</groupId> <artifactId>scalikejdbc-config_2.11</artifactId> <version>${scalikejdbc.version}</version> </dependency>二、resource文件下创建application.conf文件,并配置以下内容
# JDBC settings db.default.driver="com.mysql.jdbc.Driver" db.default.url="jdbc:mysql://localhost:3306//spark?characterEncoding=uft-8" db.default.user="root" db.default.password="123456" # Connection Pool settings db.default.poolInitialSize=10 db.default.poolMaxSize=20 db.default.connectionTimeoutMillis=1000 # Connection Pool settings db.default.poolInitialSize=5 db.default.poolMaxSize=7 db.default.poolConnectionTimeoutMillis=1000 db.default.poolValidationQuery="select 1 as one" db.default.poolFactoryName="commons-dbcp2" db.legacy.driver="org.h2.Driver" db.legacy.url="jdbc:h2:file:./db/db2" db.legacy.user="foo" db.legacy.password="bar" # MySQL example db.default.driver="com.mysql.jdbc.Driver" db.default.url="jdbc:mysql://localhost/scalikejdbc" # PostgreSQL example db.default.driver="org.postgresql.Driver" db.default.url="jdbc:postgresql://localhost:5432/scalikejdbc"三、操作mysql数据库实例
import scalikejdbc.{ConnectionPool, DB, SQL} import scalikejdbc.config.DBs case class User(id: Int, name: String, age: Int) object ScalaLikeJdbc { def main(args: Array[String]): Unit = { // 加载驱动 classOf[com.mysql.jdbc.Driver] // Class.forName("com.mysql.jdbc.Driver") //解析application.conf的文件 DBs.setup() // createTable() // println("User2表创建完毕") // val userLists = List(User(1, "zhangsan", 18), User(2, "lisi", 20), User(3, "wangwu", 35)) // insert(userLists) // println("批量插入完毕") // println(selectAll()) // println(selectByID(2)) // updateByID(2,60) // println(selectByID(2)) deleteByID(2) println(selectAll()) DBs.close() } def createTable(): Unit = { DB.autoCommit { implicit session => SQL("create table user2(\nid int not null auto_increment,\nname varchar(100) not null,\nage int,\nprimary key ( id )\n)engine=innodb default charset=utf8; ") .execute.apply() } } def insert(users: List[User]): Unit = { DB.localTx { implicit session => for (user <- users) { SQL("insert into user2(id,name,age) values(?,?,?)") .bind(user.id, user.name, user.age) .update().apply() } } } //3、查询所有 def selectAll(): List[User] = { val list: List[User] = DB.readOnly { implicit session => SQL("SELECT * from user2").map(rs => User(rs.int(1), rs.string(2), rs.int(3))).list().apply() } list } def selectByID(id: Int): Option[User] = { val list: Option[User] = DB.readOnly { implicit session => SQL(s"select id,name,age from user2 where id = ${id}").map(rs => User(rs.int(1), rs.string(2), rs.int(3))).single.apply() } list } def updateByID(id: Int, age: Int): Unit = { DB.localTx { implicit session => SQL(s"update user2 set age = ? where id = ${id}").bind(age).update().apply() } } def deleteByID(id: Int): Unit = { DB.localTx { implicit session => SQL(s"delete from user2 where id = ${id}").update().apply() } } }四、直接在代码中进行连接初始化,省去(二)
import scalikejdbc.config._ import scalikejdbc._ import scala.collection.mutable.ListBuffer object ScalikejdbcApp { Class.forName("com.mysql.jdbc.Driver") ConnectionPool.singleton("jdbc:mysql://192.168.xx.xx:3306/spark","root","123456") implicit val session = AutoSession def main(args: Array[String]): Unit = { create //insert(1,"ruoruo") //highlevelinsert(List(3,4),List("JJ","星星"))//顺序不连续没关系,但是id有重复就会报错 //update(4,"xingxing") println(select()) delete() ConnectionPool.close()//用完连接池要关闭 } def create = { implicit val session = AutoSession sql""" CREATE TABLE IF NOT EXISTS Person( id int PRIMARY KEY NOT NULL auto_increment, name varchar(64), created_time timestamp not null DEFAULT current_timestamp )ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=1 """.execute.apply() //如果你不想字段为 NULL 可以设置字段的属性为 NOT NULL, 在操作数据库时如果输入该字段的数据为NULL ,就会报错。 //PRIMARY KEY关键字用于定义列为主键。 您可以使用多列来定义主键,列间以逗号分隔 //AUTO_INCREMENT定义列为自增的属性,一般用于主键,数值会自动加1 //ENGINE 设置存储引擎,CHARSET 设置编码 } //插入一条数据 def insert(id:Int,name:String ): Unit ={ implicit val session=AutoSession sql"""insert into Person(id,name)values (${id},${name})""".update.apply() } //插入两条数据。 def highlevelinsert(id:List[Int],name:List[String])={ sql"""insert into Person(id,name)values(${id(0)},${name(0)}),(${id(1)},${name(1)}) """.update().apply() println(s"${id}(0),${name(0)}")//List(3, 4)(0),JJ } //更新数据 def update(id:Int,name:String)={ implicit val session=AutoSession sql"update Person set name=${name}where id =${id}".update().apply() } //查询数据 def select()={ implicit val session=AutoSession //sql"select * from Person".map(x=>x.string("name")).list().apply()//List(ruoruo, J?, xingxing) //sql"select * from Person where Person.id=4".map(x=>x.string("name")).single().apply()//Some(xingxing) // sql"select * from Person where Person.id=4".map(x=>x.string("name")).single().apply().get//xingxing sql"select * from Person".map(x=>(x.string("id"),x.string("name"))).list().apply()//List((1,ruoruo), (3,J?), (4,xingxing)) } //删除数据 def delete={ //sql"delete from Person where person.id=3".update()//删除id=3,name=J总这条数据 //sql"delete from Person".update()//删除Person这张表里面的所有数据,但是该表依然存在 sql"drop table if exists person".update()//删除整张表 } }五、ScalikeJDBC操作API
ScalikeJDBC中有多种查询API,包括single, first, list 和foreach,他们内部都是调用java.sql.PreparedStatement#executeQuery()实现的。
single函数返回匹配到的单行数据,并且封装成Option值。如果single函数匹配到多行,那么在运行的时候会抛出异常。使用single函数如下:
import scalikejdbc._ val id = 123 // simple example val name: Option[String] = DB readOnly { implicit session => sql"select name from emp where id = ${id}".map(rs => rs.string("name")).single.apply() } // defined mapper as a function val nameOnly = (rs: WrappedResultSet) => rs.string("name") val name: Option[String] = DB readOnly { implicit session => sql"select name from emp where id = ${id}".map(nameOnly).single.apply() } // define a class to map the result case class Emp(id: String, name: String) val emp: Option[Emp] = DB readOnly { implicit session => sql"select id, name from emp where id = ${id}" .map(rs => Emp(rs.string("id"), rs.string("name"))).single.apply() } // QueryDSL object Emp extends SQLSyntaxSupport[Emp] { def apply(e: ResultName[Emp])(rs: WrappedResultSet): Emp = new Emp(id = rs.get(e.id), name = rs.get(e.name)) } val e = Emp.syntax("e") val emp: Option[Emp] = DB readOnly { implicit session => withSQL { select.from(Emp as e).where.eq(e.id, id) }.map(Emp(e.resultName)).single.apply() }
first函数返回多行结果中的第一行结果,而且返回的类型也是Option封装的。
val name: Option[String] = DB readOnly { implicit session => sql"select name from emp".map(rs => rs.string("name")).first.apply() } val e = Emp.syntax("e") val name: Option[String] = DB readOnly { implicit session => withSQL { select(e.result.name).from(Emp as e) }.map(_.string(e.name)).first.apply() }
list函数将匹配到的多行存储在scala.collection.immutable.List中:
val name: List[String] = DB readOnly { implicit session => sql"select name from emp".map(rs => rs.string("name")).list.apply() } val e = Emp.syntax("e") val name: Option[String] = DB readOnly { implicit session => withSQL { select(e.result.name).from(Emp as e) }.map(_.string(e.name)).list.apply() }
foreach函数允许你在iterations中进行一些有副作用的计算,这个函数在ResultSet含有大量的返回值情况下特别有用。
DB readOnly { implicit session => sql"select name from emp".foreach { rs => out.write(rs.string("name")) } } val e = Emp.syntax("e") DB readOnly { implicit session => withSQL { select(e.name).from(Emp as e) }.foreach { rs => out.write(rs.string(e.name)) } }
PostgreSQL的JDBC驱动默认情况下(fetchSize=0)将无限制地获取返回的结果,这种情况会导致内存相关的问题:
在ScalikeJDBC 2.0.5之后,我们可以设置JDBC的fetchSize值:
val e = Emp.syntax("e") DB readOnly { implicit session => sql"select name from emp" .fetchSize(1000) .foreach { rs => out.write(rs.string("name")) } }
或者直接在scalikejdbc.DBSession上设置fetchSize:
val (e, c) = (Emp.syntax("e"), Cmp.syntax("c")) DB readOnly { implicit session => session.fetchSize(1000) withSQL { select(e.name).from(Emp as e) }.foreach { rs => out.write(rs.string(e.name) } withSQL { select(c.name).from(Cmp as c) }.foreach { rs => out.write(rs.string(c.name)) } }
def toMap(rs: WrappedResultSet): Map[String, Any] = { (1 to rs.metaData.getColumnCount).foldLeft(Map[String, Any]()) { (result, i) => val label = rs.metaData.getColumnLabel(i) Some(rs.any(label)).map { nullableValue => result + (label -> nullableValue) }.getOrElse(result) } } sql"select * from emp".map(rs => toMap(rs)).single.apply()
ParameterBinder[A]使得我们可以在ScalikeJDBC中自定义如何将参数和PreparedStatement进行绑定。下面的例子将展示如何在InputStream和PreparedStatement进行绑定的情况使用ResultSet#setBinaryStream:
sql"create table blob_example (id bigint, data blob)").execute.apply() val bytes = scala.Array[Byte](1, 2, 3, 4, 5, 6, 7) val bytesBinder = ParameterBinder[InputStream]( value = new ByteArrayInputStream(bytes), binder = (stmt: PreparedStatement, idx: Int) => stmt.setBinaryStream(idx, in, bytes.length) ) sql"insert into blob_example (data) values (${bytesBinder})").update.apply()
update最终运行的是java.sql.PreparedStatement#executeUpdate()
import scalikejdbc._ DB localTx { implicit session => sql"""insert into emp (id, name, created_at) values (${id}, ${name}, ${DateTime.now})""" .update.apply() val id = sql"insert into emp (name, created_at) values (${name}, current_timestamp)" .updateAndReturnGeneratedKey.apply() sql"update emp set name = ${newName} where id = ${id}".update.apply() sql"delete emp where id = ${id}".update.apply() } val column = Emp.column DB localTx { implicit s => withSQL { insert.into(Emp).namedValues( column.id -> id, column.name -> name, column.createdAt -> DateTime.now) }.update.apply() val id: Long = withSQL { insert.into(Empy).namedValues(column.name -> name, column.createdAt -> sqls.currentTimestamp) }.updateAndReturnGeneratedKey.apply() withSQL { update(Emp).set(column.name -> newName).where.eq(column.id, id) }.update.apply() withSQL { delete.from(Emp).where.eq(column.id, id) }.update.apply() }
execute最终运行的是java.sql.PreparedStatement#execute().
DB autoCommit { implicit session => sql"create table emp (id integer primary key, name varchar(30))".execute.apply() } // QueryDSL doesn't support DDL yet.
batch和batchByName最终运行的是java.sql.PreparedStatement#executeBatch()
import scalikejdbc._ DB localTx { implicit session => val batchParams: Seq[Seq[Any]] = (2001 to 3000).map(i => Seq(i, "name" + i)) sql"insert into emp (id, name) values (?, ?)".batch(batchParams: _*).apply() } DB localTx { implicit session => sql"insert into emp (id, name) values ({id}, {name})" .batchByName(Seq(Seq('id -> 1, 'name -> "Alice"), Seq('id -> 2, 'name -> "Bob")):_*) .apply() } val column = Emp.column DB localTx { implicit session => val batchParams: Seq[Seq[Any]] = (2001 to 3000).map(i => Seq(i, "name" + i)) withSQL { insert.into(Emp).namedValues(column.id -> sqls.?, column.name -> sqls.?) }.batch(batchParams: _*).apply() }