Java教程

关于SparkSQL的开窗函数,你应该知道这些!

本文主要是介绍关于SparkSQL的开窗函数,你应该知道这些!,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

文章目录

      • 1.概述
        • 介绍
        • 聚合函数和开窗函数
        • 开窗函数分类
      • 2. 准备工作
      • 3. 聚合开窗函数
      • 4. 排序开窗函数
        • 4.1 ROW_NUMBER顺序排序
        • 4.2 RANK跳跃排序
        • 4.3 DENSE_RANK连续排序
        • 4.4 NTILE分组排名[了解]
      • 结语

1.概述

  • 介绍

        相信用过MySQL的朋友都知道,MySQL中也有开窗函数的存在。开窗函数的引入是为了既显示聚集前的数据,又显示聚集后的数据。即在每一行的最后一列添加聚合函数的结果。

        开窗用于为行定义一个窗口(这里的窗口是指运算将要操作的行的集合),它对一组值进行操作,不需要使用 GROUP BY 子句对数据进行分组,能够在同一行中同时返回基础行的列和聚合列。

        

  • 聚合函数和开窗函数

        聚合函数是将多行变成一行,count,avg…

        开窗函数是将一行变成多行

        聚合函数如果要显示其他的列必须将列加入到group by中

        开窗函数可以不使用group by,直接将所有信息显示出来

  • 开窗函数分类

  1. 聚合开窗函数

        聚合函数(列) OVER(选项),这里的选项可以是PARTITION BY 子句,但不可以是 ORDER BY 子句。

  1. 排序开窗函数

        排序函数(列) OVER(选项),这里的选项可以是ORDER BY 子句,也可以是OVER(PARTITION BY 子句 ORDER BY 子句),但不可以是 PARTITION BY 子句

2. 准备工作

进入到SparkShell命令行

/export/servers/spark/bin/spark-shell --master spark://node01:7077,node02:7077

创建一个样例类,用于封装数据

case class Score(name: String, clazz: Int, score: Int)

创建一个RDD数组,造一些数据,并调用toDF方法将其转换成DataFrame

val scoreDF = spark.sparkContext.makeRDD(Array(
Score("a1", 1, 80),
Score("a2", 1, 78),
Score("a3", 1, 95),
Score("a4", 2, 74),
Score("a5", 2, 92),
Score("a6", 3, 99),
Score("a7", 3, 99),
Score("a8", 3, 45),
Score("a9", 3, 55),
Score("a10", 3, 78),
Score("a11", 3, 100))
).toDF("name", "class", "score")

创建一个临时表

scoreDF.createOrReplaceTempView("scores")

查询所有数据

scoreDF.show()
+----+-----+-----+
|name|class|score|
+----+-----+-----+
|  a1|    1|   80|
|  a2|    1|   78|
|  a3|    1|   95|
|  a4|    2|   74|
|  a5|    2|   92|
|  a6|    3|   99|
|  a7|    3|   99|
|  a8|    3|   45|
|  a9|    3|   55|
| a10|    3|   78|
| a11|    3|  100|
+----+-----+-----+

3. 聚合开窗函数

  • 示例1

        OVER 关键字表示把聚合函数当成聚合开窗函数而不是聚合函数。

        SQL标准允许将所有聚合函数用做聚合开窗函数。

spark.sql("select  count(name)  from scores").show
spark.sql("select name, class, score, count(name) over() name_count from scores").show

查询结果如下所示:

查询结果如下所示:
+----+-----+-----+----------+                                                   
|name|class|score|name_count|
+----+-----+-----+----------+
|  a1|    1|   80|        11|
|  a2|    1|   78|        11|
|  a3|    1|   95|        11|
|  a4|    2|   74|        11|
|  a5|    2|   92|        11|
|  a6|    3|   99|        11|
|  a7|    3|   99|        11|
|  a8|    3|   45|        11|
|  a9|    3|   55|        11|
| a10|    3|   78|        11|
| a11|    3|  100|        11|
+----+-----+-----+----------+
  • 示例2
            OVER 关键字后的括号中还可以添加选项用以改变进行聚合运算的窗口范围。
    如果 OVER 关键字后的括号中的选项为空,则开窗函数会对结果集中的所有行进行聚合运算

        开窗函数的 OVER 关键字后括号中的可以使用 PARTITION BY 子句来定义行的分区来供进行聚合计算。与 GROUP BY 子句不同,PARTITION BY 子句创建的分区是独立于结果集的,创建的分区只是供进行聚合计算的,而且不同的开窗函数所创建的分区也不互相影响

        下面的 SQL 语句用于显示按照班级分组后每组的人数:

        OVER(PARTITION BY class)表示对结果集按照 class 进行分区,并且计算当前行所属的组的聚合计算结果。

spark.sql("select name, class, score, count(name) over(partition by class) name_count from scores").show

        查询结果如下所示:

+----+-----+-----+----------+                                                   
|name|class|score|name_count|
+----+-----+-----+----------+
|  a1|    1|   80|         3|
|  a2|    1|   78|         3|
|  a3|    1|   95|         3|
|  a6|    3|   99|         6|
|  a7|    3|   99|         6|
|  a8|    3|   45|         6|
|  a9|    3|   55|         6|
| a10|    3|   78|         6|
| a11|    3|  100|         6|
|  a4|    2|   74|         2|
|  a5|    2|   92|         2|
+----+-----+-----+----------+

4. 排序开窗函数

4.1 ROW_NUMBER顺序排序

        row_number() over(order by score) as rownum 表示按score 升序的方式来排序,并得出排序结果的序号

注意:
        在排序开窗函数中使用 PARTITION BY 子句需要放置在ORDER BY 子句之前。

  • 示例1
spark.sql("select name, class, score, row_number() over(order by score) rank from scores").show()
+----+-----+-----+----+
|name|class|score|rank|
+----+-----+-----+----+
|  a8|    3|   45|   1|
|  a9|    3|   55|   2|
|  a4|    2|   74|   3|
|  a2|    1|   78|   4|
| a10|    3|   78|   5|
|  a1|    1|   80|   6|
|  a5|    2|   92|   7|
|  a3|    1|   95|   8|
|  a6|    3|   99|   9|
|  a7|    3|   99|  10|
| a11|    3|  100|  11|
+----+-----+-----+----+
spark.sql("select name, class, score, row_number() over(partition by class order by score) rank from scores").show()
+----+-----+-----+----+                                                         
|name|class|score|rank|
+----+-----+-----+----+
|  a2|    1|   78|   1|
|  a1|    1|   80|   2|
|  a3|    1|   95|   3|
|  a8|    3|   45|   1|
|  a9|    3|   55|   2|
| a10|    3|   78|   3|
|  a6|    3|   99|   4|
|  a7|    3|   99|   5|
| a11|    3|  100|   6|
|  a4|    2|   74|   1|
|  a5|    2|   92|   2|
+----+-----+-----+----+

4.2 RANK跳跃排序

        rank() over(order by score) as rank表示按 score升序的方式来排序,并得出排序结果的排名号

        这个函数求出来的排名结果可以并列(并列第一/并列第二),并列排名之后的排名将是并列的排名加上并列数

        简单说每个人只有一种排名,然后出现两个并列第一名的情况,这时候排在两个第一名后面的人将是第三名,也就是没有了第二名,但是有两个第一名

  • 实例2
spark.sql("select name, class, score, rank() over(order by score) rank from scores").show()                                                     
+----+-----+-----+----+
|name|class|score|rank|
+----+-----+-----+----+
|  a8|    3|   45|   1|
|  a9|    3|   55|   2|
|  a4|    2|   74|   3|
| a10|    3|   78|   4|
|  a2|    1|   78|   4|
|  a1|    1|   80|   6|
|  a5|    2|   92|   7|
|  a3|    1|   95|   8|
|  a6|    3|   99|   9|
|  a7|    3|   99|   9|
| a11|    3|  100|  11|
+----+-----+-----+----+
spark.sql("select name, class, score, rank() over(partition by class order by score) rank from scores").show()
+----+-----+-----+----+                                                         
|name|class|score|rank|
+----+-----+-----+----+
|  a2|    1|   78|   1|
|  a1|    1|   80|   2|
|  a3|    1|   95|   3|
|  a8|    3|   45|   1|
|  a9|    3|   55|   2|
| a10|    3|   78|   3|
|  a6|    3|   99|   4|
|  a7|    3|   99|   4|
| a11|    3|  100|   6|
|  a4|    2|   74|   1|
|  a5|    2|   92|   2|
+----+-----+-----+----+
 

4.3 DENSE_RANK连续排序

        dense_rank() over(order by score) as dense_rank 表示按score 升序的方式来排序,并得出排序结果的排名号。

        这个函数并列排名之后的排名是并列排名加1

        简单说每个人只有一种排名,然后出现两个并列第一名的情况,这时候排在两个第一名后面的人将是第二名,也就是两个第一名,一个第二名

  • 实例3
spark.sql("select name, class, score, dense_rank() over(order by score) rank from scores").show()
+----+-----+-----+----+
|name|class|score|rank|
+----+-----+-----+----+
|  a8|    3|   45|   1|
|  a9|    3|   55|   2|
|  a4|    2|   74|   3|
|  a2|    1|   78|   4|
| a10|    3|   78|   4|
|  a1|    1|   80|   5|
|  a5|    2|   92|   6|
|  a3|    1|   95|   7|
|  a6|    3|   99|   8|
|  a7|    3|   99|   8|
| a11|    3|  100|   9|
+----+-----+-----+----+
spark.sql("select name, class, score, dense_rank() over(partition by class order by score) rank from scores").show()
+----+-----+-----+----+                                                         
|name|class|score|rank|
+----+-----+-----+----+
|  a2|    1|   78|   1|
|  a1|    1|   80|   2|
|  a3|    1|   95|   3|
|  a8|    3|   45|   1|
|  a9|    3|   55|   2|
| a10|    3|   78|   3|
|  a6|    3|   99|   4|
|  a7|    3|   99|   4|
| a11|    3|  100|   5|
|  a4|    2|   74|   1|
|  a5|    2|   92|   2|
+----+-----+-----+----+

4.4 NTILE分组排名[了解]

        ntile(6) over(order by score)as ntile表示按 score 升序的方式来排序,然后 6 等分成 6 个组,并显示所在组的序号。

  • 实例4
spark.sql("select name, class, score, ntile(6) over(order by score) rank from scores").show()
+----+-----+-----+----+
|name|class|score|rank|
+----+-----+-----+----+
|  a8|    3|   45|   1|
|  a9|    3|   55|   1|
|  a4|    2|   74|   2|
|  a2|    1|   78|   2|
| a10|    3|   78|   3|
|  a1|    1|   80|   3|
|  a5|    2|   92|   4|
|  a3|    1|   95|   4|
|  a6|    3|   99|   5|
|  a7|    3|   99|   5|
| a11|    3|  100|   6|
+----+-----+-----+----+
spark.sql("select name, class, score, ntile(6) over(partition by class order by score) rank from scores").show()
+----+-----+-----+----+                                                         
|name|class|score|rank|
+----+-----+-----+----+
|  a2|    1|   78|   1|
|  a1|    1|   80|   2|
|  a3|    1|   95|   3|
|  a8|    3|   45|   1|
|  a9|    3|   55|   2|
| a10|    3|   78|   3|
|  a6|    3|   99|   4|
|  a7|    3|   99|   5|
| a11|    3|  100|   6|
|  a4|    2|   74|   1|
|  a5|    2|   92|   2|
+----+-----+-----+----+

结语

        本次的分享就到这里,受益的朋友或对大数据技术感兴趣的伙伴可以点个赞关注一下博主,后续会持续更新大数据的相关内容,敬请期待(✪ω✪)

在这里插入图片描述

这篇关于关于SparkSQL的开窗函数,你应该知道这些!的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!