目录
抽象类
抽象类界面
前奏
修改Makefile
引出抽象类界面
看以下例子,对于Human类中的虚函数,后面加上"=0"就变为了纯虚函数,连空函数都不需要提供,纯虚函数不需要定义,一个类中如果含有纯虚函数就称为抽象类,在main函数中抽象类不能有实例对象
#include <iostream> #include <string.h> #include <unistd.h> using namespace std; class Human { private: int a; public: virtual void eating(void) = 0; virtual void wearing(void) = 0; virtual void driving(void) = 0; virtual ~Human() { cout<<"~Human()"<<endl; } virtual Human* test(void) {cout<<"Human's test"<<endl; return this; } }; class Englishman : public Human { public: void eating(void) { cout<<"use knife to eat"<<endl; } void wearing(void) {cout<<"wear english style"<<endl; } void driving(void) {cout<<"drive english car"<<endl; } virtual ~Englishman() { cout<<"~Englishman()"<<endl; } virtual Englishman* test(void) {cout<<"Englishman's test"<<endl; return this; } }; class Chinese : public Human { public: void eating(void) { cout<<"use chopsticks to eat"<<endl; } void wearing(void) {cout<<"wear chinese style"<<endl; } void driving(void) {cout<<"drive chinese car"<<endl; } virtual ~Chinese() { cout<<"~Chinese()"<<endl; } virtual Chinese* test(void) {cout<<"Chinese's test"<<endl; return this; } }; int main(int argc, char **argv) { //Human h; Englishman e; Chinese c; return 0; }
如果Chinese类中的driving函数注释了,则Chinese也是一个抽象类,不能被实例化,若子类没有覆写所有的纯虚函数,则子类还是抽象类
class Chinese : public Human { public: ... //void driving(void) {cout<<"drive chinese car"<<endl; } ... };
对于Chinese再延伸出派生类,在子类中覆写driving函数就可以进行实例化
class Guangximan : public Chinese { void driving(void) {cout<<"drive guangxi car"<<endl; } };
一个程序由多个人编写,分为应用编程和类编程,将上述程序分为类编程Human、English和Chinese,和应用编程main.cpp
如下程序中,English和Chinese都是Human的派生类,因此我们可以把共性的东西抽出来,例如name,这样派生类盘大的时候就可以节省代码
/* Human.h */ #ifndef _HUMAN_H #define _HUMAN_H #include <iostream> #include <string.h> #include <unistd.h> using namespace std; class Human { private: char *name; public: void setName(char *name); char *getName(void); virtual void eating(void){cout<<"use hand to eat"<<endl;} virtual void wearing(void){} virtual void driving(void){} }; #endif /* Human.cpp */ #include "Human.h" void Human::setName(char *name) { this->name = name; } char *Human::getName(void) { return this->name; } /* Englishman.h */ #ifndef _ENGLISHMAN_H #define _ENGLISHMAN_H #include <iostream> #include <string.h> #include <unistd.h> #include "Human.h" using namespace std; class Englishman : public Human { public: void eating(void); void wearing(void); void driving(void); ~Englishman(); }; #endif /* Englishman.cpp */ #include "Englishman.h" void Englishman::eating(void) { cout<<"use knife to eat"<<endl; } void Englishman::wearing(void) { cout<<"wear english style"<<endl; } void Englishman::driving(void) { cout<<"drive english car"<<endl; } Englishman::~Englishman() { cout<<"~Englishman()"<<endl; } /* Chinese.h */ #ifndef _CHINESE_H #define _CHINESE_H #include <iostream> #include <string.h> #include <unistd.h> #include "Human.h" using namespace std; class Chinese : public Human{ public: void eating(void); void wearing(void); void driving(void); ~Chinese(); }; #endif /* Chinese.cpp */ #include "Chinese.h" void Chinese::eating(void) { cout<<"use chopsticks to eat"<<endl; } void Chinese::wearing(void) { cout<<"wear chinese style"<<endl; } void Chinese::driving(void) { cout<<"drive chinese car"<<endl; } Chinese::~Chinese() { cout<<"~Chinese()"<<endl; } /* main.cpp */ #include "Human.h" #include "Englishman.h" #include "Chinese.h" void test_eating(Human *h) { h->eating(); } int main(int argc, char **argv) { Englishman e; Chinese c; Human* h[2] = {&e, &c}; int i; for (i = 0; i < 2; i++) test_eating(h[i]); //需要在human里面实现多态 加上virtual return 0; }
执行结果如下,对于test_eating函数实现多态,在基类加上virtual就可以了
use knife to eat
use chopsticks to eat
~Chinese()
~Englishman()
将程序在Human中将函数编写为纯虚函数,则Human类变为抽象类,这样Human节省空间,连空函数都不需要,同时可以防止Human类的实例化,重新编译执行程序,依然可以实现多态
class Human { private: char *name; public: void setName(char *name); char *getName(void); virtual void eating(void) = 0; virtual void wearing(void) = 0; virtual void driving(void) = 0; };
将应用编程和类编程分开,将类编程编译为动态库,在修改类编程的时候,就不需要重新编译应用编程
Human: main.o libHuman.so g++ -o $@ $< -L./ -lHuman %.o : %.cpp g++ -fPIC -c -o $@ $< libHuman.so : Englishman.o Chinese.o Human.o g++ -shared -o $@ $^ clean: rm -f *.o Human
同时需要指定一下动态库环境变量为当前路径,执行结果和上述一样
export LD_LIBRARY_PATH=./
先来修改程序,修改English.h和English.cpp加上一个数组表示地址
/* English.h */ #ifndef _ENGLISHMAN_H #define _ENGLISHMAN_H #include <iostream> #include <string.h> #include <unistd.h> #include "Human.h" using namespace std; class Englishman : public Human { private: char address[100]; int age; public: void eating(void); void wearing(void); void driving(void); Englishman(); Englishman(char *name, int age, char *address); ~Englishman(); }; #endif /* English.cpp */ #include "Englishman.h" void Englishman::eating(void) { cout<<"use knife to eat"<<endl; } void Englishman::wearing(void) { cout<<"wear english style"<<endl; } void Englishman::driving(void) { cout<<"drive english car"<<endl; } Englishman::~Englishman() { cout<<"~Englishman()"<<endl; } Englishman::Englishman() {} Englishman::Englishman(char *name, int age, char *address) { setName(name); this->age = age; memset(this->address, 0, 100); strcpy(this->address, address); } /* main.cpp */ #include "Human.h" #include "Englishman.h" #include "Chinese.h" void test_eating(Human *h) { h->eating(); } int main(int argc, char **argv) { Englishman e("Bill", 10, "sfwqerfsdfas"); Chinese c; Human* h[2] = {&e, &c}; int i; for (i = 0; i < 2; i++) test_eating(h[i]); return 0; }
重新通过make来编译生成库执行程序没有问题,当我们修改以下语句的时候,再调用刚才生成的动态库执行程序,程序崩溃
/* English.h */ char address[1000]; /* English.cpp */ memset(this->address, 0, 1000);
对于上述情况,我们让应用编程只和Human类打交道,将容易变化的类隔离开,先来修改程序
在Chinese.cpp和English.cpp中都加上一个接口
/* Chinese.cpp */ ... Human& CreateChinese(char *name, int age, char *address) { return *(new Chinese()); //在Chinese类中没有提供name,这里就不传递参数 } /* English.cpp */ ... Human& CreateEnglishman(char *name, int age, char *address) { return *(new Englishman(name, age, address)); }
然后在Human.h中声明
#ifndef _HUMAN_H #define _HUMAN_H #include <iostream> #include <string.h> #include <unistd.h> using namespace std; class Human { private: char *name; public: void setName(char *name); char *getName(void); virtual void eating(void) = 0; virtual void wearing(void) = 0; virtual void driving(void) = 0; }; Human& CreateEnglishman(char *name, int age, char *address); Human& CreateChinese(char *name, int age, char *address); #endif
在main.cpp中就只需要包含Human.h头文件
#include "Human.h" //#include "Englishman.h" //#include "Chinese.h" void test_eating(Human *h) { h->eating(); } int main(int argc, char **argv) { Human& e = CreateEnglishman("Bill", 10, "sfwqerfsdfas"); Human& c = CreateChinese("zhangsan", 11, "beijing"); Human* h[2] = {&e, &c}; int i; for (i = 0; i < 2; i++) test_eating(h[i]); return 0; }
这样重新编译,再根据上面的方法去修改address的大小,直接执行程序依然正常运行,这样,中间引入了一个相对固定的Human.h,就是所谓的抽象类界面
完善程序加上析构函数,修改各类,同时将析构函数编写为虚函数,实现调用的时候是自己的析构函数,不应该写成纯虚函数,否则在派生类中需要有一个"~Human()"命名的析构函数
class Chinese : public Human{ public: void eating(void); void wearing(void); void driving(void); virtual ~Chinese(); }; ... class Englishman : public Human { private: char address[100]; int age; public: void eating(void); void wearing(void); void driving(void); Englishman(); Englishman(char *name, int age, char *address); virtual ~Englishman(); }; ... class Human { private: char *name; public: void setName(char *name); char *getName(void); virtual void eating(void) = 0; virtual void wearing(void) = 0; virtual void driving(void) = 0; virtual ~Human() {cout<<"~Human"<<endl;} }; ... int main(int argc, char **argv) { Human& e = CreateEnglishman("Bill", 10, "sfwqerfsdfas"); Human& c = CreateChinese("zhangsan", 11, "beijing"); Human* h[2] = {&e, &c}; int i; for (i = 0; i < 2; i++) test_eating(h[i]); delete &e; delete &c; return 0; }