import cv2
from tracker import *
# 进行追踪
tracker = EuclideanDistTracker() # 这个函数通过获取同一物体不同时刻的boundingbox的坐标从而实现对其的追踪
# 导入想要进行tracking的视频,要求拍摄视频的过程中摄像头是保持静止状态的
cap = cv2.VideoCapture("highway.mp4")
# 从导入的视频中找到正在移动的物体
object_detector = cv2.createBackgroundSubtractorMOG2(history=100, varThreshold=40) # 对参数进行调整则会改变捕捉移动物体的精准性
while True:
ret, frame = cap.read()
height, width, _ =frame.shape # 得出视频画面的大小,从而去方便计算出感兴趣区域所在的位置
print(height, width) # 720,1280
# 设置一个感兴趣区域,让处理(对物体的detection和tracking)只关注于感兴趣区域,从而减少一些计算量也让检测变得简单一些
roi = frame[340: 720, 500: 800]
# 物体检测
mask = object_detector.apply(roi) # 通过加一个蒙版,更加清晰的显示出移动中的物体,即只留下白色的移动的物体。
_, mask = cv2.threshold(mask, 254, 255, cv2.THRESH_BINARY) # 去除移动物体被检测到的时候所附带的阴影(阴影为灰色)
contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # 找到视频中物体的轮廓
detections = [] # 用于存放boundingbox的起始点坐标、宽、高
for cnt in contours:
# 计算出每个轮廓内部的面积,并根据面积的大小去除那些不必要的噪声(比如树、草等等)
area = cv2.contourArea(cnt)
if area > 100:
# cv2.drawContours(roi, [cnt], -1, (0, 255, 0), 2) # 画出移动物体的轮廓
x, y, w, h = cv2.boundingRect(cnt)
detections.append([x, y, w, h])
# 物体追踪
boxer_ids = tracker.update(detections) # 同一个物体会有相同的ID
# print(boxer_ids)
for box_id in boxer_ids:
x, y, w, h, id = box_id
cv2.putText(roi, "Obj" + str(id), (x, y - 15), cv2.FONT_ITALIC, 0.7, (255, 0, 0), 2)
cv2.rectangle(roi, (x, y), (x + w, y + h), (0, 255, 0), 2) # 根据移动物体的轮廓添加boundingbox
print(detections)
cv2.imshow("Frame", frame) # 打印结果
# cv2.imshow("Mask", mask) # 打印出蒙版
# cv2.imshow("ROI", roi) # 打印出你想要的ROI在哪
key = cv2.waitKey(30)
if key == 27:
break
cap.release()
cv2.destroyAllWindows()
tracker.py文件
import math
class EuclideanDistTracker:
def __init__(self):
# Store the center positions of the objects
self.center_points = {}
# Keep the count of the IDs
# each time a new object id detected, the count will increase by one
self.id_count = 0
def update(self, objects_rect):
# Objects boxes and ids
objects_bbs_ids = []
# Get center point of new object
for rect in objects_rect:
x, y, w, h = rect
cx = (x + x + w) // 2
cy = (y + y + h) // 2
# Find out if that object was detected already
same_object_detected = False
for id, pt in self.center_points.items():
dist = math.hypot(cx - pt[0], cy - pt[1])
if dist < 25:
self.center_points[id] = (cx, cy)
print(self.center_points)
objects_bbs_ids.append([x, y, w, h, id])
same_object_detected = True
break
# New object is detected we assign the ID to that object
if same_object_detected is False:
self.center_points[self.id_count] = (cx, cy)
objects_bbs_ids.append([x, y, w, h, self.id_count])
self.id_count += 1
# Clean the dictionary by center points to remove IDS not used anymore
new_center_points = {}
for obj_bb_id in objects_bbs_ids:
_, _, _, _, object_id = obj_bb_id
center = self.center_points[object_id]
new_center_points[object_id] = center
# Update dictionary with IDs not used removed
self.center_points = new_center_points.copy()
return objects_bbs_ids