C/C++教程

CUDA加速计算的基础C/C++

本文主要是介绍CUDA加速计算的基础C/C++,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

本文是Nvidia 90美金的课程笔记

无论是从出色的性能,还是从易用性来看,CUDA计算平台都是加速计算的制胜法宝。CUDA 提供了一种可扩展 C、C++、Python 和 Fortran 等语言的编码范式,该范式能够在世界上性能超强劲的并行处理器 NVIDIA GPU 上运行经加速的大规模并行代码。CUDA 可以毫不费力地大幅加速应用程序,具有适用于DNN、BLAS、图形分析和FFT等更多运算的高度优化库生态系统,并且还附带功能强大的命令行和可视化性能分析器。

CUDA 支持以下领域

概念

https://www.nvidia.com/en-us/gpu-accelerated-applications/

在这里插入图片描述

gridDim.x 网格中的块数,图中为2
blockIdx.x网格中块的索引,图中为0,1
blockDim.x块中线程数 图中为4
threadIdx.x块中线程的索引,图中为,0,1,2,3

流多处理器(Streaming Multiprocessors)
统一内存(UM)
nsight-sys
命令示例
nvcc -o vector-add-no-prefetch 01-vector-add/01-vector-add.cu -run
nsys profile --stats=true -o vector-add-no-prefetch-report ./vector-add-no-prefetch

示例一

包含
使用跨网格循环来处理比网格更大的数组
CUDA错误处理功能

#include <stdio.h>
#include <assert.h>

inline cudaError_t checkCuda(cudaError_t result)
{
  if (result != cudaSuccess) {
    fprintf(stderr, "CUDA Runtime Error: %s\n", cudaGetErrorString(result));
    assert(result == cudaSuccess);
  }
  return result;
}

void initWith(float num, float *a, int N)
{
  for(int i = 0; i < N; ++i)
  {
    a[i] = num;
  }
}

__global__
void addVectorsInto(float *result, float *a, float *b, int N)
{
  int index = threadIdx.x + blockIdx.x * blockDim.x;
  int stride = blockDim.x * gridDim.x;

  for(int i = index; i < N; i += stride)
  {
    result[i] = a[i] + b[i];
  }
}

void checkElementsAre(float target, float *array, int N)
{
  for(int i = 0; i < N; i++)
  {
    if(array[i] != target)
    {
      printf("FAIL: array[%d] - %0.0f does not equal %0.0f\n", i, array[i], target);
      exit(1);
    }
  }
  printf("SUCCESS! All values added correctly.\n");
}

int main()
{
  const int N = 2<<20;
  size_t size = N * sizeof(float);

  float *a;
  float *b;
  float *c;

  checkCuda( cudaMallocManaged(&a, size) );
  checkCuda( cudaMallocManaged(&b, size) );
  checkCuda( cudaMallocManaged(&c, size) );

  initWith(3, a, N);
  initWith(4, b, N);
  initWith(0, c, N);

  size_t threadsPerBlock;
  size_t numberOfBlocks;

  threadsPerBlock = 256;
  numberOfBlocks = (N + threadsPerBlock - 1) / threadsPerBlock;

  addVectorsInto<<<numberOfBlocks, threadsPerBlock>>>(c, a, b, N);

  checkCuda( cudaGetLastError() );
  checkCuda( cudaDeviceSynchronize() );

  checkElementsAre(7, c, N);

  checkCuda( cudaFree(a) );
  checkCuda( cudaFree(b) );
  checkCuda( cudaFree(c) );
}

示例二

包含
查询设备信息
异步内存预取
cudaMemPrefetchAsync(pointerToSomeUMData, size, deviceId);
cudaMemPrefetchAsync(pointerToSomeUMData, size, cudaCpuDeviceId);
将内存预取回CPU

#include <stdio.h>

void initWith(float num, float *a, int N)
{
  for(int i = 0; i < N; ++i)
  {
    a[i] = num;
  }
}

__global__
void addVectorsInto(float *result, float *a, float *b, int N)
{
  int index = threadIdx.x + blockIdx.x * blockDim.x;
  int stride = blockDim.x * gridDim.x;

  for(int i = index; i < N; i += stride)
  {
    result[i] = a[i] + b[i];
  }
}

void checkElementsAre(float target, float *vector, int N)
{
  for(int i = 0; i < N; i++)
  {
    if(vector[i] != target)
    {
      printf("FAIL: vector[%d] - %0.0f does not equal %0.0f\n", i, vector[i], target);
      exit(1);
    }
  }
  printf("Success! All values calculated correctly.\n");
}

int main()
{
  int deviceId;
  int numberOfSMs;

  cudaGetDevice(&deviceId);
  cudaDeviceGetAttribute(&numberOfSMs, cudaDevAttrMultiProcessorCount, deviceId);
  printf("Device ID: %d\tNumber of SMs: %d\n", deviceId, numberOfSMs);

  const int N = 2<<24;
  size_t size = N * sizeof(float);

  float *a;
  float *b;
  float *c;

  cudaMallocManaged(&a, size);
  cudaMallocManaged(&b, size);
  cudaMallocManaged(&c, size);

  /*
   * Prefetching can also be used to prevent CPU page faults.
   */

  cudaMemPrefetchAsync(a, size, cudaCpuDeviceId);
  cudaMemPrefetchAsync(b, size, cudaCpuDeviceId);
  cudaMemPrefetchAsync(c, size, cudaCpuDeviceId);
  initWith(3, a, N);
  initWith(4, b, N);
  initWith(0, c, N);

  cudaMemPrefetchAsync(a, size, deviceId);
  cudaMemPrefetchAsync(b, size, deviceId);
  cudaMemPrefetchAsync(c, size, deviceId);

  size_t threadsPerBlock;
  size_t numberOfBlocks;

  threadsPerBlock = 256;
  numberOfBlocks = 32 * numberOfSMs;

  cudaError_t addVectorsErr;
  cudaError_t asyncErr;

  addVectorsInto<<<numberOfBlocks, threadsPerBlock>>>(c, a, b, N);

  addVectorsErr = cudaGetLastError();
  if(addVectorsErr != cudaSuccess) printf("Error: %s\n", cudaGetErrorString(addVectorsErr));

  asyncErr = cudaDeviceSynchronize();
  if(asyncErr != cudaSuccess) printf("Error: %s\n", cudaGetErrorString(asyncErr));

  /*
   * Prefetching can also be used to prevent CPU page faults.
   */

  cudaMemPrefetchAsync(c, size, cudaCpuDeviceId);
  checkElementsAre(7, c, N);

  cudaFree(a);
  cudaFree(b);
  cudaFree(c);
}

示例三

包含CUDA并发流
cudaStream_t stream; // CUDA流的类型为 cudaStream_t
cudaStreamCreate(&stream); // 注意,必须将一个指针传递给 cudaCreateStream

someKernel<<<number_of_blocks, threads_per_block, 0, stream>>>(); // stream 作为第4个EC参数传递

cudaStreamDestroy(stream); // 注意,将值(而不是指针)传递给 cudaDestroyStream
流用于并行进行数据初始化的核函数

#include <stdio.h>

__global__
void initWith(float num, float *a, int N)
{

  int index = threadIdx.x + blockIdx.x * blockDim.x;
  int stride = blockDim.x * gridDim.x;

  for(int i = index; i < N; i += stride)
  {
    a[i] = num;
  }
}

__global__
void addVectorsInto(float *result, float *a, float *b, int N)
{
  int index = threadIdx.x + blockIdx.x * blockDim.x;
  int stride = blockDim.x * gridDim.x;

  for(int i = index; i < N; i += stride)
  {
    result[i] = a[i] + b[i];
  }
}

void checkElementsAre(float target, float *vector, int N)
{
  for(int i = 0; i < N; i++)
  {
    if(vector[i] != target)
    {
      printf("FAIL: vector[%d] - %0.0f does not equal %0.0f\n", i, vector[i], target);
      exit(1);
    }
  }
  printf("Success! All values calculated correctly.\n");
}

int main()
{
  int deviceId;
  int numberOfSMs;

  cudaGetDevice(&deviceId);
  cudaDeviceGetAttribute(&numberOfSMs, cudaDevAttrMultiProcessorCount, deviceId);

  const int N = 2<<24;
  size_t size = N * sizeof(float);

  float *a;
  float *b;
  float *c;

  cudaMallocManaged(&a, size);
  cudaMallocManaged(&b, size);
  cudaMallocManaged(&c, size);

  cudaMemPrefetchAsync(a, size, deviceId);
  cudaMemPrefetchAsync(b, size, deviceId);
  cudaMemPrefetchAsync(c, size, deviceId);

  size_t threadsPerBlock;
  size_t numberOfBlocks;

  threadsPerBlock = 256;
  numberOfBlocks = 32 * numberOfSMs;

  cudaError_t addVectorsErr;
  cudaError_t asyncErr;

  /*
   * Create 3 streams to run initialize the 3 data vectors in parallel.
   */

  cudaStream_t stream1, stream2, stream3;
  cudaStreamCreate(&stream1);
  cudaStreamCreate(&stream2);
  cudaStreamCreate(&stream3);

  /*
   * Give each `initWith` launch its own non-standard stream.
   */

  initWith<<<numberOfBlocks, threadsPerBlock, 0, stream1>>>(3, a, N);
  initWith<<<numberOfBlocks, threadsPerBlock, 0, stream2>>>(4, b, N);
  initWith<<<numberOfBlocks, threadsPerBlock, 0, stream3>>>(0, c, N);

  addVectorsInto<<<numberOfBlocks, threadsPerBlock>>>(c, a, b, N);

  addVectorsErr = cudaGetLastError();
  if(addVectorsErr != cudaSuccess) printf("Error: %s\n", cudaGetErrorString(addVectorsErr));

  asyncErr = cudaDeviceSynchronize();
  if(asyncErr != cudaSuccess) printf("Error: %s\n", cudaGetErrorString(asyncErr));

  cudaMemPrefetchAsync(c, size, cudaCpuDeviceId);

  checkElementsAre(7, c, N);

  /*
   * Destroy streams when they are no longer needed.
   */

  cudaStreamDestroy(stream1);
  cudaStreamDestroy(stream2);
  cudaStreamDestroy(stream3);

  cudaFree(a);
  cudaFree(b);
  cudaFree(c);
}

示例四

手动内存管理CUDA API 调用的代码。
手动分配主机和设备内存
使用流实现数据传输和代码的重叠执行
核函数和内存复制回主机重叠执行

int *host_a, *device_a; // Define host-specific and device-specific arrays.
cudaMalloc(&device_a, size); // device_a is immediately available on the GPU.
cudaMallocHost(&host_a, size); // host_a is immediately available on CPU, and is page-locked, or pinned.

initializeOnHost(host_a, N); // No CPU page faulting since memory is already allocated on the host.

// cudaMemcpy takes the destination, source, size, and a CUDA-provided variable for the direction of the copy.
cudaMemcpy(device_a, host_a, size, cudaMemcpyHostToDevice);

kernel<<<blocks, threads, 0, someStream>>>(device_a, N);

// cudaMemcpy can also copy data from device to host.
cudaMemcpy(host_a, device_a, size, cudaMemcpyDeviceToHost);

verifyOnHost(host_a, N);

cudaFree(device_a);
cudaFreeHost(host_a); // Free pinned memory like this.

#include <stdio.h>

__global__
void initWith(float num, float *a, int N)
{

  int index = threadIdx.x + blockIdx.x * blockDim.x;
  int stride = blockDim.x * gridDim.x;

  for(int i = index; i < N; i += stride)
  {
    a[i] = num;
  }
}

__global__
void addVectorsInto(float *result, float *a, float *b, int N)
{
  int index = threadIdx.x + blockIdx.x * blockDim.x;
  int stride = blockDim.x * gridDim.x;

  for(int i = index; i < N; i += stride)
  {
    result[i] = a[i] + b[i];
  }
}

void checkElementsAre(float target, float *vector, int N)
{
  for(int i = 0; i < N; i++)
  {
    if(vector[i] != target)
    {
      printf("FAIL: vector[%d] - %0.0f does not equal %0.0f\n", i, vector[i], target);
      exit(1);
    }
  }
  printf("Success! All values calculated correctly.\n");
}

int main()
{
  int deviceId;
  int numberOfSMs;

  cudaGetDevice(&deviceId);
  cudaDeviceGetAttribute(&numberOfSMs, cudaDevAttrMultiProcessorCount, deviceId);

  const int N = 2<<24;
  size_t size = N * sizeof(float);

  float *a;
  float *b;
  float *c;
  float *h_c;

  cudaMalloc(&a, size);
  cudaMalloc(&b, size);
  cudaMalloc(&c, size);
  cudaMallocHost(&h_c, size);

  size_t threadsPerBlock;
  size_t numberOfBlocks;

  threadsPerBlock = 256;
  numberOfBlocks = 32 * numberOfSMs;

  cudaError_t addVectorsErr;
  cudaError_t asyncErr;

  /*
   * Create 3 streams to run initialize the 3 data vectors in parallel.
   */

  cudaStream_t stream1, stream2, stream3;
  cudaStreamCreate(&stream1);
  cudaStreamCreate(&stream2);
  cudaStreamCreate(&stream3);

  /*
   * Give each `initWith` launch its own non-standard stream.
   */

  initWith<<<numberOfBlocks, threadsPerBlock, 0, stream1>>>(3, a, N);
  initWith<<<numberOfBlocks, threadsPerBlock, 0, stream2>>>(4, b, N);
  initWith<<<numberOfBlocks, threadsPerBlock, 0, stream3>>>(0, c, N);

  for (int i = 0; i < 4; ++i)
  {
    cudaStream_t stream;
    cudaStreamCreate(&stream);

    addVectorsInto<<<numberOfBlocks/4, threadsPerBlock, 0, stream>>>(&c[i*N/4], &a[i*N/4], &b[i*N/4], N/4);
    cudaMemcpyAsync(&h_c[i*N/4], &c[i*N/4], size/4, cudaMemcpyDeviceToHost, stream);
    cudaStreamDestroy(stream);
  }

  addVectorsErr = cudaGetLastError();
  if(addVectorsErr != cudaSuccess) printf("Error: %s\n", cudaGetErrorString(addVectorsErr));

  asyncErr = cudaDeviceSynchronize();
  if(asyncErr != cudaSuccess) printf("Error: %s\n", cudaGetErrorString(asyncErr));

  checkElementsAre(7, h_c, N);

  /*
   * Destroy streams when they are no longer needed.
   */

  cudaStreamDestroy(stream1);
  cudaStreamDestroy(stream2);
  cudaStreamDestroy(stream3);

  cudaFree(a);
  cudaFree(b);
  cudaFree(c);
  cudaFreeHost(h_c);
}

练习作业
https://yangwc.com/2019/06/20/NbodySimulation/

这篇关于CUDA加速计算的基础C/C++的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!