博客班级 | AHPU机器学习 |
---|---|
作业要求 | https://edu.cnblogs.com/campus/ahgc/machinelearning/homework/12004 |
作业目标 | <K-近邻算法及应用 > |
学号 | 3180701113 |
1.理解K-近邻算法原理,能实现算法K近邻算法;
2.掌握常见的距离度量方法;
3.掌握K近邻树实现算法;
4.针对特定应用场景及数据,能应用K近邻解决实际问题。
1.实现曼哈顿距离、欧氏距离、闵式距离算法,并测试算法正确性。
2.实现K近邻树算法;
3.针对iris数据集,应用sklearn的K近邻算法进行类别预测。
4.针对iris数据集,编制程序使用K近邻树进行类别预测。
1.对照实验内容,撰写实验过程、算法及测试结果;
2.代码规范化:命名规则、注释;
3.分析核心算法的复杂度;
4.查阅文献,讨论K近邻的优缺点;
5.举例说明K近邻的应用场景。
Language: import math #导入数学运算函数 from itertools import combinations
Language: #计算欧式距离 def L(x, y, p=2): # x1 = [1, 1], x2 = [5,1] if len(x) == len(y) and len(x) > 1: # 当两个特征的维数相等时,并且维度大于1时。 sum = 0 # 目前总的损失函数值为0 for i in range(len(x)): # 用range函数来遍历x所有的维度,x与y的维度相等。 sum += math.pow(abs(x[i] - y[i]), p) # math.pow( x, y )函数是计算x的y次方。 return math.pow(sum, 1/p)# 距离公式。 else: return 0
# 课本例3.1 x1 = [1, 1] x2 = [5, 1] x3 = [4, 4]
Language: # 计算x1与x2和x3之间的距离 for i in range(1, 5): # i从1到4 r = { '1-{}'.format(c):L(x1, c, p=i) for c in [x2, x3]} # 创建一个字典 print(min(zip(r.values(), r.keys()))) # 当p=i时选出x2和我x3中距离x1最近的点
import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from collections import Counter
# data 输入数据 iris = load_iris() # 获取python中鸢尾花Iris数据集 df = pd.DataFrame(iris.data, columns=iris.feature_names) # 将数据集使用DataFrame建表 df['label'] = iris.target # 将表的最后一列作为目标列 df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label'] # 定义表中每一列 # data = np.array(df.iloc[:100, [0, 1, -1]])
df#查看已建立的表格
#绘制散点图 plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0') plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1') plt.xlabel('sepal length') plt.ylabel('sepal width') plt.legend()
Language: data = np.array(df.iloc[:100, [0, 1, -1]]) #按行索引,取出第0列第1列和最后一列,即取出sepal长度、宽度和标签 X, y = data[:,:-1], data[:,-1] #X为sepal length,sepal width y为标签 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) # train_test_split函数用于将矩阵随机划分为训练子集和测试子集
Language: #定义模型 class KNN: def __init__(self, X_train, y_train, n_neighbors=3, p=2): # 初始化数据,neighbor表示邻近点,p为欧氏距离 """ parameter: n_neighbors 临*点个数 parameter: p 距离度量 """ self.n = n_neighbors#临*点个数 self.p = p#距离度量 self.X_train = X_train self.y_train = y_train def predict(self, X): # 取出n个点,放入空的列表,列表中存放预测点与训练集点的距离及其对应标签 # 取距离最小的k个点:先取前k个,然后遍历替换 # knn_list存“距离”和“label” knn_list = [] for i in range(self.n): #np.linalg.norm 求范数 dist = np.linalg.norm(X - self.X_train[i], ord=self.p) knn_list.append((dist, self.y_train[i])) #再取出训练集剩下的点,然后与n_neighbor个点比较大叫,将距离大的点更新 #保证knn_list列表中的点是距离最小的点 for i in range(self.n, len(self.X_train)): max_index = knn_list.index(max(knn_list, key=lambda x: x[0])) dist = np.linalg.norm(X - self.X_train[i], ord=self.p) #g更新最*邻中距离比当前点远的点 if knn_list[max_index][0] > dist: knn_list[max_index] = (dist, self.y_train[i]) # 统计 knn = [k[-1] for k in knn_list] #counter为计数器,按照标签计数 count_pairs = Counter(knn) #排序 max_count = sorted(count_pairs, key=lambda x:x)[-1] return max_count #预测的正确率 def score(self, X_test, y_test): right_count = 0 n = 10 for X, y in zip(X_test, y_test): label = self.predict(X) if label == y: right_count += 1 return right_count / len(X_test)
clf = KNN(X_train, y_train)#调用knn算法进行计算
clf.score(X_test, y_test)#计算正确率
test_point = [6.0, 3.0]#预测点 print('Test Point: {}'.format(clf.predict(test_point)))#预测结果
plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0') plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')#打印预测点 plt.plot(test_point[0], test_point[1], 'bo', label='test_point') plt.xlabel('sepal length') plt.ylabel('sepal width') plt.legend()
from sklearn.neighbors import KNeighborsClassifier
clf_sk = KNeighborsClassifier() clf_sk.fit(X_train, y_train)
clf_sk.score(X_test, y_test)
Language: # kd-tree每个结点中主要包含的数据结构如下 class KdNode(object): def __init__(self, dom_elt, split, left, right): self.dom_elt = dom_elt #结点的父结点 self.split = split #划分结点 self.left = left #左结点 self.right = right # 右结点 class KdTree(object): def __init__(self, data): k = len(data[0]) # 数据维度 def CreateNode(split, data_set): # 按第split维划分数据集exset创建KdNode if not data_set: # 数据集为空 return None # key参数的值为一个函数,此函数只有一个参数且返回一个值用来进行比较 # operator模块提供的itemgetter函数用于获取对象的哪些维的数据,参数为需要获取的数据在对象 #data_set.sort(key=itemgetter(split)) # 按要进行分割的那一维数据排序 data_set.sort(key=lambda x: x[split]) split_pos = len(data_set) // 2 # //为Python中的整数除法 median = data_set[split_pos] # 中位数分割点 split_next = (split + 1) % k # cycle coordinates # 递归的创建kd树 return KdNode(median, split, CreateNode(split_next, data_set[:split_pos]), # 创建左子树 CreateNode(split_next, data_set[split_pos + 1:])) # 创建右子树 self.root = CreateNode(0, data) # 从第0维分量开始构建kd树,返回根节点 # KDTree的前序遍历 def preorder(root): print (root.dom_elt) if root.left: # 节点不为空 preorder(root.left) if root.right: preorder(root.right)
# 对构建好的kd树进行搜索,寻找与目标点最近的样本点: from math import sqrt from collections import namedtuple # 定义一个namedtuple,分别存放最近坐标点、最近距离和访问过的节点数 result = namedtuple("Result_tuple", "nearest_point nearest_dist nodes_visited") def find_nearest(tree, point): k = len(point) # 数据维度 def travel(kd_node, target, max_dist): if kd_node is None: return result([0] * k, float("inf"), 0) # python中用float("inf")和float("-inf")表示正负 nodes_visited = 1 s = kd_node.split # 进行分割的维度 pivot = kd_node.dom_elt # 进行分割的“轴” if target[s] <= pivot[s]: # 如果目标点第s维小于分割轴的对应值(目标离左子树更近) nearer_node = kd_node.left # 下一个访问节点为左子树根节点 further_node = kd_node.right # 同时记录下右子树 else: # 目标离右子树更近 nearer_node = kd_node.right # 下一个访问节点为右子树根节点 further_node = kd_node.left temp1 = travel(nearer_node, target, max_dist) # 进行遍历找到包含目标点的区域 nearest = temp1.nearest_point # 以此叶结点作为“当前最近点” dist = temp1.nearest_dist # 更新最近距离 nodes_visited += temp1.nodes_visited if dist < max_dist: max_dist = dist # 最近点将在以目标点为球心,max_dist为半径的超球体内 temp_dist = abs(pivot[s] - target[s]) # 第s维上目标点与分割超平面的距离 if max_dist < temp_dist: # 判断超球体是否与超平面相交 return result(nearest, dist, nodes_visited) # 不相交则可以直接返回,不用继续判断 #---------------------------------------------------------------------- # 计算目标点与分割点的欧氏距离 temp_dist = sqrt(sum((p1 - p2) ** 2 for p1, p2 in zip(pivot, target))) if temp_dist < dist: # 如果“更近” nearest = pivot # 更新最近点 dist = temp_dist # 更新最近距离 max_dist = dist # 更新超球体半径 # 检查另一个子结点对应的区域是否有更近的点 temp2 = travel(further_node, target, max_dist) nodes_visited += temp2.nodes_visited if temp2.nearest_dist < dist: # 如果另一个子结点内存在更近距离 nearest = temp2.nearest_point # 更新最近点 dist = temp2.nearest_dist # 更新最近距离 return result(nearest, dist, nodes_visited) return travel(tree.root, point, float("inf")) # 从根节点开始递归
data = [[2,3],[5,4],[9,6],[4,7],[8,1],[7,2]] kd = KdTree(data) preorder(kd.root)
from time import clock from random import random # 产生一个k维随机向量,每维分量值在0~1之间 def random_point(k): return [random() for _ in range(k)] # 产生n个k维随机向量 def random_points(k, n): return [random_point(k) for _ in range(n)]
ret = find_nearest(kd, [3,4.5]) print (ret)
N = 400000 t0 = clock() kd2 = KdTree(random_points(3, N)) # 构建包含四十万个3维空间样本点的kd树 ret2 = find_nearest(kd2, [0.1,0.5,0.8]) # 四十万个样本点中寻找离目标最近的点 t1 = clock() print ("time: ",t1-t0, "s") print (ret2)
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
K近邻算法优缺点:
算法优点:
(1)简单,易于理解,易于实现,无需估计参数。
(2)训练时间为零。它没有显示的训练,不像其它有监督的算法会用训练集train一个模型(也就是拟合一个函数),然后验证集或测试集用该模型分类。KNN只是把样本保存起来,收到测试数据时再处理,所以KNN训练时间为零。
(3)KNN可以处理分类问题,同时天然可以处理多分类问题,适合对稀有事件进行分类。
(4)特别适合于多分类问题(multi-modal,对象具有多个类别标签), KNN比SVM的表现要好。
(5)KNN还可以处理回归问题,也就是预测。
(6)和朴素贝叶斯之类的算法比,对数据没有假设,准确度高,对异常点不敏感。
算法缺点:
(1)计算量太大,尤其是特征数非常多的时候。每一个待分类文本都要计算它到全体已知样本的距离,才能得到它的第K个最近邻点。
(2)可理解性差,无法给出像决策树那样的规则。
(3)样本不平衡的时候,对稀有类别的预测准确率低。当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。
(4)对训练数据依赖度特别大,对训练数据的容错性太差。如果训练数据集中,有一两个数据是错误的,刚刚好又在需要分类的数值的旁边,这样就会直接导致预测的数据的不准确。
K近邻算法的应用场景:
k近邻算法应该是目前工业上还会使用最为简单的算法,并且使用起来也很简单、方便,但是有个前提是数据量不能过大,更不能使用有维数诅咒的数据集。