本文主要是介绍学生课程分数的Spark SQL分析,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
读学生课程分数文件chapter4-data01.txt,创建DataFrame。
1.生成“表头”
2.生成“表中的记录”
3.把“表头”和“表中的记录”拼装在一起
用DataFrame的操作或SQL语句完成以下数据分析要求,并和用RDD操作的实现进行对比:
- 每个分数+5分。
-
df_scs.select('name','cource',df_scs['score']+5).show()
- 总共有多少学生?
-
df_scs.select('name').distinct().count()
- 总共开设了哪些课程?
- df_scs.select('cource').distinct().show()
- 每个学生选修了多少门课?
- df_scs.groupBy('name').count().show()
- 每门课程有多少个学生选?
- df_scs.groupBy('cource').count().show()
- 每门课程大于95分的学生人数?
- df_scs.filter(df_scs['score']>95).groupBy('cource').count().show()
- Tom选修了几门课?每门课多少分?
- df_scs.filter(df_scs['name']=='Tom').show()
- Tom的成绩按分数大小排序。
- df_scs.filter(df_scs['name']=='Tom').sort(df_scs['score'].desc()).show()
- Tom的平均分。
- df_scs.filter(df_scs['name']=='Tom').agg({'score':'mean'}).show()
- 求每门课的平均分,最高分,最低分。
- 每门课的平均分:
- df_scs.groupBy("cource").avg('score').show()
-
df_scs.groupBy("cource").agg({'score':'mean'}).show()
- 每门课的最高分:
-
df_scs.groupBy("cource").max('score').show()
df_scs.groupBy("cource").agg({'score':'max'}).show()
- 每门课的最低分:
-
df_scs.groupBy("cource").min('score').show()
df_scs.groupBy("cource").agg({'score':'min'}).show()
- 求每门课的选修人数及平均分,精确到2位小数。
- from pyspark.sql.types import DecimalType
-
dt = df_scs.groupBy('cource').count().join(df_scs.groupBy('cource').agg({'score':'mean'}),'cource').withColumnRenamed('avg(score)','avg_score')
- dt.withColumn('avg_score',dt.avg_score.cast(DecimalType(5,2))).show()
- 每门课的不及格人数,通过率
- df_scs.filter(df_scs.score<60).groupBy(df_scs.cource).count().show()
- 结果可视化。
这篇关于学生课程分数的Spark SQL分析的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!