Java教程

实验二K-近邻算法及应用

本文主要是介绍实验二K-近邻算法及应用,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

目录
  • 一、作业信息
  • 二、实验内容
    • 1、实现曼哈顿距离、欧氏距离、闵式距离算法,并测试算法正确性。
    • 2、实现K近邻树算法;
    • 3、针对iris数据集,应用sklearn的K近邻算法进行类别预测。
    • 4、针对iris数据集,编制程序使用K近邻树进行类别预测。
  • 三、实验小结

一、作业信息

博客班级 机器学习实验-计算机18级 (安徽工程大学 - 计算机与信息学院)
作业要求 1. 对照实验内容,撰写实验过程、算法及测试结果;2. 代码规范化:命名规则、注释;3. 分析核心算法的复杂度;4.查阅文献,讨论K近邻的优缺点;5.举例说明K近邻的应用场景。
作业目的 1. 理解K-近邻算法原理,能实现算法K近邻算法;2. 掌握常见的距离度量方法;3. 掌握K近邻树实现算法;4. 针对特定应用场景及数据,能应用K近邻解决实际问题。
学号 3180701335

二、实验内容

1、实现曼哈顿距离、欧氏距离、闵式距离算法,并测试算法正确性。

2、实现K近邻树算法;

3、针对iris数据集,应用sklearn的K近邻算法进行类别预测。

4、针对iris数据集,编制程序使用K近邻树进行类别预测。

in[1]

import math#导入数学运算函数
from itertools import combinations


in[2]

#计算欧式距离
def L(x, y, p=2):
# x1 = [1, 1], x2 = [5,1]  在这里,实例是两个二维特征 x1 = [1, 1], x2 = [5,1]
    if len(x) == len(y) and len(x) > 1:
    # 当两个特征的维数相等时,并且维度大于1时。
        sum = 0
        # 目前总的损失函数值为0
        for i in range(len(x)): # 用range函数来遍历x所有的维度,x与y的维度相等。
            sum += math.pow(abs(x[i] - y[i]), p)
            # math.pow( x, y )函数是计算x的y次方。
        return math.pow(sum, 1/p)# 距离公式。
    else:
        return 0

in[3]

# x1, x2
#输入数据
for i in range(1, 5):
    r = { '1-{}'.format(c):L(x1, c, p=i) for c in [x2, x3]}
    # 一条语句循环两次x2、x3,当x2时,当前i产生一个值,当x3时,当前i产生一个值。
    print(min(zip(r.values(), r.keys())))
    print(min(zip(r.values(), r.keys()))

in[4]

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline##载入Fisher的鸢尾花数据
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from collections import Counter

in[5]

# data
iris = load_iris()#中文名是安德森鸢尾花卉数据集
df = pd.DataFrame(iris.data, columns=iris.feature_names)#是一个表格 
#加入一列为分类标签
df['label'] = iris.target# 表头字段就是key
df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
# 选择其中的4个特征进行训练
# data = np.array(df.iloc[:100, [0, 1, -1]])

in[6]

df




in[7]

plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')
plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend()


in[8]

data = np.array(df.iloc[:100, [0, 1, -1]])
X, y = data[:,:-1], data[:,-1]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

in[9]

#定义模型
class KNN:
    def __init__(self, X_train, y_train, n_neighbors=3, p=2):
        """
        parameter: n_neighbors 临*点个数
        parameter: p 距离度量
        """
        self.n = n_neighbors#临*点个数
        self.p = p#距离度量
        self.X_train = X_train
        self.y_train = y_train
    
    def predict(self, X):
        # 取出n个点,放入空的列表,列表中存放预测点与训练集点的距离及其对应标签
        # 取距离最小的k个点:先取前k个,然后遍历替换
        # knn_list存“距离”和“label”
        knn_list = []
        for i in range(self.n):
            #np.linalg.norm 求范数
            dist = np.linalg.norm(X - self.X_train[i], ord=self.p)
            knn_list.append((dist, self.y_train[i]))
        #再取出训练集剩下的点,然后与n_neighbor个点比较大叫,将距离大的点更新
        #保证knn_list列表中的点是距离最小的点
        for i in range(self.n, len(self.X_train)):
            max_index = knn_list.index(max(knn_list, key=lambda x: x[0]))
            dist = np.linalg.norm(X - self.X_train[i], ord=self.p)
            #g更新最*邻中距离比当前点远的点
            if knn_list[max_index][0] > dist:
                knn_list[max_index] = (dist, self.y_train[i])
        # 统计
        # 统计分类最多的点,确定预测数据的分类
        knn = [k[-1] for k in knn_list]
        #counter为计数器,按照标签计数
        count_pairs = Counter(knn) 
        #排序
        max_count = sorted(count_pairs, key=lambda x:x)[-1]
        return max_count

    #预测的正确率
    def score(self, X_test, y_test):
        right_count = 0
        n = 10
        for X, y in zip(X_test, y_test):
            label = self.predict(X)
            if label == y:
                right_count += 1
        return right_count / len(X_test)

in[10]

clf = KNN(X_train, y_train)

in[11]

clf.score(X_test, y_test)


in[12]

test_point = [6.0, 3.0]
print('Test Point: {}'.format(clf.predict(test_point)))


in[13]

plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')
plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')
plt.plot(test_point[0], test_point[1], 'bo', label='test_point')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend()


in[14]

from sklearn.neighbors import KNeighborsClassifier

in[15]

clf_sk = KNeighborsClassifier()
clf_sk.fit(X_train, y_train)

in[16]

clf_sk.score(X_test, y_test)


in[17]

# kd-tree每个结点中主要包含的数据结构如下
class KdNode(object):
    def __init__(self, dom_elt, split, left, right):
        self.dom_elt = dom_elt # k维向量节点(k维空间中的一个样本点)
        self.split = split # 整数(进行分割维度的序号)
        self.left = left # 该结点分割超平面左子空间构成的kd-tree
        self.right = right # 该结点分割超平面右子空间构成的kd-tree

class KdTree(object):
    def __init__(self, data):
        k = len(data[0]) # 数据维度
        def CreateNode(split, data_set): # 按第split维划分数据集exset创建KdNode
            if not data_set: # 数据集为空
                return None
            # key参数的值为一个函数,此函数只有一个参数且返回一个值用来进行比较
            # operator模块提供的itemgetter函数用于获取对象的哪些维的数据,参数为需要获取的数据在对象
            #data_set.sort(key=itemgetter(split)) # 按要进行分割的那一维数据排序
            data_set.sort(key=lambda x: x[split])
            split_pos = len(data_set) // 2 # //为Python中的整数除法
            median = data_set[split_pos] # 中位数分割点
            split_next = (split + 1) % k # cycle coordinates
            # 递归的创建kd树
            return KdNode(median, split,
                CreateNode(split_next, data_set[:split_pos]), # 创建左子树
                CreateNode(split_next, data_set[split_pos + 1:])) # 创建右子树
        self.root = CreateNode(0, data) # 从第0维分量开始构建kd树,返回根节点
        
# KDTree的前序遍历
def preorder(root):
    print (root.dom_elt)
    if root.left: # 节点不为空
        preorder(root.left)
    if root.right:
        preorder(root.right)

in[18]

# 对构建好的kd树进行搜索,寻找与目标点最近的样本点:
from math import sqrt
from collections import namedtuple

# 定义一个namedtuple,分别存放最近坐标点、最近距离和访问过的节点数
result = namedtuple("Result_tuple", "nearest_point nearest_dist nodes_visited")

def find_nearest(tree, point):
    k = len(point) # 数据维度
    def travel(kd_node, target, max_dist):
        if kd_node is None:
            return result([0] * k, float("inf"), 0) # python中用float("inf")和float("-inf")表示正负
        nodes_visited = 1
        s = kd_node.split # 进行分割的维度
        pivot = kd_node.dom_elt # 进行分割的“轴”
        if target[s] <= pivot[s]: # 如果目标点第s维小于分割轴的对应值(目标离左子树更近)
            nearer_node = kd_node.left # 下一个访问节点为左子树根节点
            further_node = kd_node.right # 同时记录下右子树
        else: # 目标离右子树更近
            nearer_node = kd_node.right # 下一个访问节点为右子树根节点
            further_node = kd_node.left
        temp1 = travel(nearer_node, target, max_dist) # 进行遍历找到包含目标点的区域
        nearest = temp1.nearest_point # 以此叶结点作为“当前最近点”
        dist = temp1.nearest_dist # 更新最近距离
        nodes_visited += temp1.nodes_visited
        if dist < max_dist:
            max_dist = dist # 最近点将在以目标点为球心,max_dist为半径的超球体内
        temp_dist = abs(pivot[s] - target[s]) # 第s维上目标点与分割超平面的距离
        if max_dist < temp_dist: # 判断超球体是否与超平面相交
            return result(nearest, dist, nodes_visited) # 不相交则可以直接返回,不用继续判断
        
        #----------------------------------------------------------------------
        # 计算目标点与分割点的欧氏距离
        temp_dist = sqrt(sum((p1 - p2) ** 2 for p1, p2 in zip(pivot, target)))
        if temp_dist < dist: # 如果“更近”
            nearest = pivot # 更新最近点
            dist = temp_dist # 更新最近距离
            max_dist = dist # 更新超球体半径
        # 检查另一个子结点对应的区域是否有更近的点
        temp2 = travel(further_node, target, max_dist)
        nodes_visited += temp2.nodes_visited
        if temp2.nearest_dist < dist: # 如果另一个子结点内存在更近距离
            nearest = temp2.nearest_point # 更新最近点
            dist = temp2.nearest_dist # 更新最近距离
        return result(nearest, dist, nodes_visited)
    return travel(tree.root, point, float("inf")) # 从根节点开始递归

in[19]

data = [[2,3],[5,4],[9,6],[4,7],[8,1],[7,2]]
kd = KdTree(data)
preorder(kd.root)


in[19]

from time import clock
from random import random
# 产生一个k维随机向量,每维分量值在0~1之间
def random_point(k):
    return [random() for _ in range(k)]
# 产生n个k维随机向量
def random_points(k, n):
    return [random_point(k) for _ in range(n)]

in[20]

ret = find_nearest(kd, [3,4.5])
print (ret)


in[21]

N = 400000
t0 = clock()
kd2 = KdTree(random_points(3, N)) # 构建包含四十万个3维空间样本点的kd树
ret2 = find_nearest(kd2, [0.1,0.5,0.8]) # 四十万个样本点中寻找离目标最近的点
t1 = clock()
print ("time: ",t1-t0, "s")
print (ret2)

三、实验小结

这次实验让我了解了KNN算法的相关知识;
邻近算法,或者说K最近邻分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是K个最近的邻居的意思,说的是每个样本都可以用它最接近的K个邻近值来代表。近邻算法就是将数据集合中每一个记录进行分类的方法。
KNN 的全称是 K Nearest Neighbors,意思是 K 个最近的邻居。从这个名字我们就能看出一些 KNN 算法的蛛丝马迹了。K 个最近邻居,毫无疑问,K 的取值肯定是至关重要的,那么最近的邻居又是怎么回事呢?其实,KNN 的原理就是当预测一个新的值 x 的时候,根据它距离最近的 K 个点是什么类别来判断 x 属于哪个类别

这篇关于实验二K-近邻算法及应用的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!