博客班级 | 机器学习实验-计算机18级 (安徽工程大学 - 计算机与信息学院) |
---|---|
作业要求 | 1. 对照实验内容,撰写实验过程、算法及测试结果;2. 代码规范化:命名规则、注释;3. 分析核心算法的复杂度;4.查阅文献,讨论K近邻的优缺点;5.举例说明K近邻的应用场景。 |
作业目的 | 1. 理解K-近邻算法原理,能实现算法K近邻算法;2. 掌握常见的距离度量方法;3. 掌握K近邻树实现算法;4. 针对特定应用场景及数据,能应用K近邻解决实际问题。 |
学号 | 3180701335 |
in[1]
import math#导入数学运算函数 from itertools import combinations
in[2]
#计算欧式距离 def L(x, y, p=2): # x1 = [1, 1], x2 = [5,1] 在这里,实例是两个二维特征 x1 = [1, 1], x2 = [5,1] if len(x) == len(y) and len(x) > 1: # 当两个特征的维数相等时,并且维度大于1时。 sum = 0 # 目前总的损失函数值为0 for i in range(len(x)): # 用range函数来遍历x所有的维度,x与y的维度相等。 sum += math.pow(abs(x[i] - y[i]), p) # math.pow( x, y )函数是计算x的y次方。 return math.pow(sum, 1/p)# 距离公式。 else: return 0
in[3]
# x1, x2 #输入数据 for i in range(1, 5): r = { '1-{}'.format(c):L(x1, c, p=i) for c in [x2, x3]} # 一条语句循环两次x2、x3,当x2时,当前i产生一个值,当x3时,当前i产生一个值。 print(min(zip(r.values(), r.keys()))) print(min(zip(r.values(), r.keys()))
in[4]
import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline##载入Fisher的鸢尾花数据 from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from collections import Counter
in[5]
# data iris = load_iris()#中文名是安德森鸢尾花卉数据集 df = pd.DataFrame(iris.data, columns=iris.feature_names)#是一个表格 #加入一列为分类标签 df['label'] = iris.target# 表头字段就是key df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label'] # 选择其中的4个特征进行训练 # data = np.array(df.iloc[:100, [0, 1, -1]])
in[6]
df
in[7]
plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0') plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1') plt.xlabel('sepal length') plt.ylabel('sepal width') plt.legend()
in[8]
data = np.array(df.iloc[:100, [0, 1, -1]]) X, y = data[:,:-1], data[:,-1] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
in[9]
#定义模型 class KNN: def __init__(self, X_train, y_train, n_neighbors=3, p=2): """ parameter: n_neighbors 临*点个数 parameter: p 距离度量 """ self.n = n_neighbors#临*点个数 self.p = p#距离度量 self.X_train = X_train self.y_train = y_train def predict(self, X): # 取出n个点,放入空的列表,列表中存放预测点与训练集点的距离及其对应标签 # 取距离最小的k个点:先取前k个,然后遍历替换 # knn_list存“距离”和“label” knn_list = [] for i in range(self.n): #np.linalg.norm 求范数 dist = np.linalg.norm(X - self.X_train[i], ord=self.p) knn_list.append((dist, self.y_train[i])) #再取出训练集剩下的点,然后与n_neighbor个点比较大叫,将距离大的点更新 #保证knn_list列表中的点是距离最小的点 for i in range(self.n, len(self.X_train)): max_index = knn_list.index(max(knn_list, key=lambda x: x[0])) dist = np.linalg.norm(X - self.X_train[i], ord=self.p) #g更新最*邻中距离比当前点远的点 if knn_list[max_index][0] > dist: knn_list[max_index] = (dist, self.y_train[i]) # 统计 # 统计分类最多的点,确定预测数据的分类 knn = [k[-1] for k in knn_list] #counter为计数器,按照标签计数 count_pairs = Counter(knn) #排序 max_count = sorted(count_pairs, key=lambda x:x)[-1] return max_count #预测的正确率 def score(self, X_test, y_test): right_count = 0 n = 10 for X, y in zip(X_test, y_test): label = self.predict(X) if label == y: right_count += 1 return right_count / len(X_test)
in[10]
clf = KNN(X_train, y_train)
in[11]
clf.score(X_test, y_test)
in[12]
test_point = [6.0, 3.0] print('Test Point: {}'.format(clf.predict(test_point)))
in[13]
plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0') plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1') plt.plot(test_point[0], test_point[1], 'bo', label='test_point') plt.xlabel('sepal length') plt.ylabel('sepal width') plt.legend()
in[14]
from sklearn.neighbors import KNeighborsClassifier
in[15]
clf_sk = KNeighborsClassifier() clf_sk.fit(X_train, y_train)
in[16]
clf_sk.score(X_test, y_test)
in[17]
# kd-tree每个结点中主要包含的数据结构如下 class KdNode(object): def __init__(self, dom_elt, split, left, right): self.dom_elt = dom_elt # k维向量节点(k维空间中的一个样本点) self.split = split # 整数(进行分割维度的序号) self.left = left # 该结点分割超平面左子空间构成的kd-tree self.right = right # 该结点分割超平面右子空间构成的kd-tree class KdTree(object): def __init__(self, data): k = len(data[0]) # 数据维度 def CreateNode(split, data_set): # 按第split维划分数据集exset创建KdNode if not data_set: # 数据集为空 return None # key参数的值为一个函数,此函数只有一个参数且返回一个值用来进行比较 # operator模块提供的itemgetter函数用于获取对象的哪些维的数据,参数为需要获取的数据在对象 #data_set.sort(key=itemgetter(split)) # 按要进行分割的那一维数据排序 data_set.sort(key=lambda x: x[split]) split_pos = len(data_set) // 2 # //为Python中的整数除法 median = data_set[split_pos] # 中位数分割点 split_next = (split + 1) % k # cycle coordinates # 递归的创建kd树 return KdNode(median, split, CreateNode(split_next, data_set[:split_pos]), # 创建左子树 CreateNode(split_next, data_set[split_pos + 1:])) # 创建右子树 self.root = CreateNode(0, data) # 从第0维分量开始构建kd树,返回根节点 # KDTree的前序遍历 def preorder(root): print (root.dom_elt) if root.left: # 节点不为空 preorder(root.left) if root.right: preorder(root.right)
in[18]
# 对构建好的kd树进行搜索,寻找与目标点最近的样本点: from math import sqrt from collections import namedtuple # 定义一个namedtuple,分别存放最近坐标点、最近距离和访问过的节点数 result = namedtuple("Result_tuple", "nearest_point nearest_dist nodes_visited") def find_nearest(tree, point): k = len(point) # 数据维度 def travel(kd_node, target, max_dist): if kd_node is None: return result([0] * k, float("inf"), 0) # python中用float("inf")和float("-inf")表示正负 nodes_visited = 1 s = kd_node.split # 进行分割的维度 pivot = kd_node.dom_elt # 进行分割的“轴” if target[s] <= pivot[s]: # 如果目标点第s维小于分割轴的对应值(目标离左子树更近) nearer_node = kd_node.left # 下一个访问节点为左子树根节点 further_node = kd_node.right # 同时记录下右子树 else: # 目标离右子树更近 nearer_node = kd_node.right # 下一个访问节点为右子树根节点 further_node = kd_node.left temp1 = travel(nearer_node, target, max_dist) # 进行遍历找到包含目标点的区域 nearest = temp1.nearest_point # 以此叶结点作为“当前最近点” dist = temp1.nearest_dist # 更新最近距离 nodes_visited += temp1.nodes_visited if dist < max_dist: max_dist = dist # 最近点将在以目标点为球心,max_dist为半径的超球体内 temp_dist = abs(pivot[s] - target[s]) # 第s维上目标点与分割超平面的距离 if max_dist < temp_dist: # 判断超球体是否与超平面相交 return result(nearest, dist, nodes_visited) # 不相交则可以直接返回,不用继续判断 #---------------------------------------------------------------------- # 计算目标点与分割点的欧氏距离 temp_dist = sqrt(sum((p1 - p2) ** 2 for p1, p2 in zip(pivot, target))) if temp_dist < dist: # 如果“更近” nearest = pivot # 更新最近点 dist = temp_dist # 更新最近距离 max_dist = dist # 更新超球体半径 # 检查另一个子结点对应的区域是否有更近的点 temp2 = travel(further_node, target, max_dist) nodes_visited += temp2.nodes_visited if temp2.nearest_dist < dist: # 如果另一个子结点内存在更近距离 nearest = temp2.nearest_point # 更新最近点 dist = temp2.nearest_dist # 更新最近距离 return result(nearest, dist, nodes_visited) return travel(tree.root, point, float("inf")) # 从根节点开始递归
in[19]
data = [[2,3],[5,4],[9,6],[4,7],[8,1],[7,2]] kd = KdTree(data) preorder(kd.root)
in[19]
from time import clock from random import random # 产生一个k维随机向量,每维分量值在0~1之间 def random_point(k): return [random() for _ in range(k)] # 产生n个k维随机向量 def random_points(k, n): return [random_point(k) for _ in range(n)]
in[20]
ret = find_nearest(kd, [3,4.5]) print (ret)
in[21]
N = 400000 t0 = clock() kd2 = KdTree(random_points(3, N)) # 构建包含四十万个3维空间样本点的kd树 ret2 = find_nearest(kd2, [0.1,0.5,0.8]) # 四十万个样本点中寻找离目标最近的点 t1 = clock() print ("time: ",t1-t0, "s") print (ret2)
这次实验让我了解了KNN算法的相关知识;
邻近算法,或者说K最近邻分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是K个最近的邻居的意思,说的是每个样本都可以用它最接近的K个邻近值来代表。近邻算法就是将数据集合中每一个记录进行分类的方法。
KNN 的全称是 K Nearest Neighbors,意思是 K 个最近的邻居。从这个名字我们就能看出一些 KNN 算法的蛛丝马迹了。K 个最近邻居,毫无疑问,K 的取值肯定是至关重要的,那么最近的邻居又是怎么回事呢?其实,KNN 的原理就是当预测一个新的值 x 的时候,根据它距离最近的 K 个点是什么类别来判断 x 属于哪个类别