Java教程

06 Spark SQL 及其DataFrame的基本操作

本文主要是介绍06 Spark SQL 及其DataFrame的基本操作,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

1.Spark SQL出现的 原因是什么?

SparkSQL是spark用来处理结构化的一个模块,它提供一个抽象的数据集DataFrame,并且是作为分布式SQL查询引擎的应用,可以将执行效率大大提升。

2.用spark.read 创建DataFrame

 

 

3.观察从不同类型文件创建DataFrame有什么异同?

 txt文件:创建的DataFrame数据没有结构

json文件:创建的DataFrame数据有结构

4.观察Spark的DataFrame与Python pandas的DataFrame有什么异同?

 

Spark SQL DataFrame的基本操作

创建:

spark.read.text()

spark.read.json()

打印数据

df.show()默认打印前20条数据,df.show(n)

 

 

打印概要

df.printSchema()

 

 

查询总行数

df.count()

 

 

df.head(3) #list类型,list中每个元素是Row类

 

 

输出全部行

df.collect() #list类型,list中每个元素是Row类

 

 

查询概况

df.describe().show()

 

 

取列

df2[‘name’]

df2.name

 

 

df.select()

df.filter()

df.groupBy()

df.sort()

 

这篇关于06 Spark SQL 及其DataFrame的基本操作的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!