普通的数组就是数组中存放了同一类型的对象。而结构化数组是指数组中存放不同对象的格式。
今天我们来详细探讨一下NumPy中的结构化数组。
因为结构化数组中包含了不同类型的对象,所以每一个对象类型都被称为一个field。
每个field都有3部分,分别是:string类型的name,任何有效dtype类型的type,还有一个可选的title。
看一个使用filed构建dtype的例子:
In [165]: np.dtype([('name', 'U10'), ('age', 'i4'), ('weight', 'f4')]) Out[165]: dtype([('name', '<U10'), ('age', '<i4'), ('weight', '<f4')])
我们可以使用上面的dtype类型来构建一个新的数组:
In [166]: x = np.array([('Rex', 9, 81.0), ('Fido', 3, 27.0)], ...: dtype=[('name', 'U10'), ('age', 'i4'), ('weight', 'f4')]) ...: In [167]: x Out[167]: array([('Rex', 9, 81.), ('Fido', 3, 27.)], dtype=[('name', '<U10'), ('age', '<i4'), ('weight', '<f4')])
x是一个1维数组,每个元素都包含三个字段,name,age和weight。并且分别指定了他们的数据类型。
可以通过index来访问一行数据:
In [168]: x[1] Out[168]: ('Fido', 3, 27.)
也可以通过name来访问一列数据 :
In [170]: x['name'] Out[170]: array(['Rex', 'Fido'], dtype='<U10')
还可以给所有的列统一赋值:
In [171]: x['age'] Out[171]: array([9, 3], dtype=int32) In [172]: x['age'] = 10 In [173]: x Out[173]: array([('Rex', 10, 81.), ('Fido', 10, 27.)], dtype=[('name', '<U10'), ('age', '<i4'), ('weight', '<f4')])
上面的例子让我们对结构化数据类型有了一个基本的认识。结构化数据类型就是一系列的filed的集合。
结构化数据类型是从基础类型创建的,主要有下面几种方式:
每个元组都是(fieldname, datatype, shape)这样的格式,其中shape 是可选的。fieldname 是 field的title。
In [174]: np.dtype([('x', 'f4'), ('y', np.float32), ('z', 'f4', (2, 2))]) Out[174]: dtype([('x', '<f4'), ('y', '<f4'), ('z', '<f4', (2, 2))])
如果fieldname是空字符的话,会以f开头的形式默认创建。
In [177]: np.dtype([('x', 'f4'), ('', 'i4'), ('z', 'i8')]) Out[177]: dtype([('x', '<f4'), ('f1', '<i4'), ('z', '<i8')])
可以选择从逗号分割的dtype类型创建:
In [178]: np.dtype('i8, f4, S3') Out[178]: dtype([('f0', '<i8'), ('f1', '<f4'), ('f2', 'S3')]) In [179]: np.dtype('3int8, float32, (2, 3)float64') Out[179]: dtype([('f0', 'i1', (3,)), ('f1', '<f4'), ('f2', '<f8', (2, 3))])
从字典创建是这样的格式: {'names': ..., 'formats': ..., 'offsets': ..., 'titles': ..., 'itemsize': ...}
这种写法可以指定name列表和formats列表。
offsets 指的是每个字段的byte offsets。titles 是字段的title,itemsize 是整个dtype的size。
In [180]: np.dtype({'names': ['col1', 'col2'], 'formats': ['i4', 'f4']}) Out[180]: dtype([('col1', '<i4'), ('col2', '<f4')]) In [181]: np.dtype({'names': ['col1', 'col2'], ...: ... 'formats': ['i4', 'f4'], ...: ... 'offsets': [0, 4], ...: ... 'itemsize': 12}) ...: Out[181]: dtype({'names':['col1','col2'], 'formats':['<i4','<f4'], 'offsets':[0,4], 'itemsize':12})
可以通过dtype 的 names 和fields 字段来访问结构化数据类型的属性:
>>> d = np.dtype([('x', 'i8'), ('y', 'f4')]) >>> d.names ('x', 'y')
>>> d.fields mappingproxy({'x': (dtype('int64'), 0), 'y': (dtype('float32'), 8)})
对于结构化类型来说,因为一个dtype中包含了多种数据类型,默认情况下这些数据类型是不对齐的。
我们可以通过下面的例子来看一下各个类型的偏移量:
>>> def print_offsets(d): ... print("offsets:", [d.fields[name][1] for name in d.names]) ... print("itemsize:", d.itemsize) >>> print_offsets(np.dtype('u1, u1, i4, u1, i8, u2')) offsets: [0, 1, 2, 6, 7, 15] itemsize: 17
如果在创建dtype类型的时候,指定了align=True,那么这些类型之间可能会按照C-struct的结构进行对齐。
对齐的好处就是可以提升处理效率。我们看一个对齐的例子:
>>> print_offsets(np.dtype('u1, u1, i4, u1, i8, u2', align=True)) offsets: [0, 1, 4, 8, 16, 24] itemsize: 32
每个Filed除了name之外,还可以包含title。
有两种方式来指定title,第一种方式:
In [182]: np.dtype([(('my title', 'name'), 'f4')]) Out[182]: dtype([(('my title', 'name'), '<f4')])
第二种方式:
In [183]: np.dtype({'name': ('i4', 0, 'my title')}) Out[183]: dtype([(('my title', 'name'), '<i4')])
看一下fields的结构:
In [187]: d.fields Out[187]: mappingproxy({'my title': (dtype('float32'), 0, 'my title'), 'name': (dtype('float32'), 0, 'my title')})
从结构化数据类型创建结构化数组之后,我们就可以对结构化数组进行操作了。
我们可以从元组中对结构化数组进行赋值:
>>> x = np.array([(1, 2, 3), (4, 5, 6)], dtype='i8, f4, f8') >>> x[1] = (7, 8, 9) >>> x array([(1, 2., 3.), (7, 8., 9.)], dtype=[('f0', '<i8'), ('f1', '<f4'), ('f2', '<f8')])
还可以从标量对结构化数组进行赋值:
>>> x = np.zeros(2, dtype='i8, f4, ?, S1') >>> x[:] = 3 >>> x array([(3, 3., True, b'3'), (3, 3., True, b'3')], dtype=[('f0', '<i8'), ('f1', '<f4'), ('f2', '?'), ('f3', 'S1')]) >>> x[:] = np.arange(2) >>> x array([(0, 0., False, b'0'), (1, 1., True, b'1')], dtype=[('f0', '<i8'), ('f1', '<f4'), ('f2', '?'), ('f3', 'S1')])
结构化数组还可以赋值给非机构化数组,但是前提是结构化数组只有一个filed:
>>> twofield = np.zeros(2, dtype=[('A', 'i4'), ('B', 'i4')]) >>> onefield = np.zeros(2, dtype=[('A', 'i4')]) >>> nostruct = np.zeros(2, dtype='i4') >>> nostruct[:] = twofield Traceback (most recent call last): ... TypeError: Cannot cast array data from dtype([('A', '<i4'), ('B', '<i4')]) to dtype('int32') according to the rule 'unsafe'
结构化数组还可以互相赋值:
>>> a = np.zeros(3, dtype=[('a', 'i8'), ('b', 'f4'), ('c', 'S3')]) >>> b = np.ones(3, dtype=[('x', 'f4'), ('y', 'S3'), ('z', 'O')]) >>> b[:] = a >>> b array([(0., b'0.0', b''), (0., b'0.0', b''), (0., b'0.0', b'')], dtype=[('x', '<f4'), ('y', 'S3'), ('z', 'O')])
之前讲到了,可以通过filed的名字来访问和修改一列数据:
>>> x = np.array([(1, 2), (3, 4)], dtype=[('foo', 'i8'), ('bar', 'f4')]) >>> x['foo'] array([1, 3]) >>> x['foo'] = 10 >>> x array([(10, 2.), (10, 4.)], dtype=[('foo', '<i8'), ('bar', '<f4')])
返回的数值是原始数组的一个视图,他们是共享内存空间的,所以修改视图同时也会修改原数据。
看一个filed是多维数组的情况:
In [188]: np.zeros((2, 2), dtype=[('a', np.int32), ('b', np.float64, (3, 3))]) Out[188]: array([[(0, [[0., 0., 0.], [0., 0., 0.], [0., 0., 0.]]), (0, [[0., 0., 0.], [0., 0., 0.], [0., 0., 0.]])], [(0, [[0., 0., 0.], [0., 0., 0.], [0., 0., 0.]]), (0, [[0., 0., 0.], [0., 0., 0.], [0., 0., 0.]])]], dtype=[('a', '<i4'), ('b', '<f8', (3, 3))])
上面构建了一个2 * 2 的矩阵,这个矩阵中的第一列是int类型,第二列是一个3 * 3 的float矩阵。
我们可以这样来查看各个列的shape值:
>>> x = np.zeros((2, 2), dtype=[('a', np.int32), ('b', np.float64, (3, 3))]) >>> x['a'].shape (2, 2) >>> x['b'].shape (2, 2, 3, 3)
除了单列的访问之外,我们还可以一次访问多列数据:
>>> a = np.zeros(3, dtype=[('a', 'i4'), ('b', 'i4'), ('c', 'f4')]) >>> a[['a', 'c']] array([(0, 0.), (0, 0.), (0, 0.)], dtype={'names':['a','c'], 'formats':['<i4','<f4'], 'offsets':[0,8], 'itemsize':12})
多列同时赋值:
>>> a[['a', 'c']] = (2, 3) >>> a array([(2, 0, 3.), (2, 0, 3.), (2, 0, 3.)], dtype=[('a', '<i4'), ('b', '<i4'), ('c', '<f4')])
简单的交换列的数据:
>>> a[['a', 'c']] = a[['c', 'a']]
结构化数组只能通过index来访问,很不方便,为此NumPy提供了一个多维数组的子类 numpy.recarray, 然后可以通过属性来访问。
我们来看几个例子:
>>> recordarr = np.rec.array([(1, 2., 'Hello'), (2, 3., "World")], ... dtype=[('foo', 'i4'),('bar', 'f4'), ('baz', 'S10')]) >>> recordarr.bar array([ 2., 3.], dtype=float32) >>> recordarr[1:2] rec.array([(2, 3., b'World')], dtype=[('foo', '<i4'), ('bar', '<f4'), ('baz', 'S10')]) >>> recordarr[1:2].foo array([2], dtype=int32) >>> recordarr.foo[1:2] array([2], dtype=int32) >>> recordarr[1].baz b'World'
recarray返回的结果是一个rec.array。除了使用np.rec.array来创建之外,还可以使用view:
In [190]: arr = np.array([(1, 2., 'Hello'), (2, 3., "World")], ...: ... dtype=[('foo', 'i4'),('bar', 'f4'), ('baz', 'a10')]) ...: In [191]: arr Out[191]: array([(1, 2., b'Hello'), (2, 3., b'World')], dtype=[('foo', '<i4'), ('bar', '<f4'), ('baz', 'S10')]) In [192]: arr.view(dtype=np.dtype((np.record, arr.dtype)), ...: ... type=np.recarray) ...: Out[192]: rec.array([(1, 2., b'Hello'), (2, 3., b'World')], dtype=[('foo', '<i4'), ('bar', '<f4'), ('baz', 'S10')])
如果是rec.array对象,它的dtype类型会被自动转换成为np.record类型:
In [200]: recordarr.dtype Out[200]: dtype((numpy.record, [('foo', '<i4'), ('bar', '<f4'), ('baz', 'S10')]))
想要转换回原始的np.ndarray类型可以这样:
In [202]: recordarr.view(recordarr.dtype.fields or recordarr.dtype, np.ndarray) Out[202]: array([(1, 2., b'Hello'), (2, 3., b'World')], dtype=[('foo', '<i4'), ('bar', '<f4'), ('baz', 'S10')])
如果通过index或者field来访问rec.array对象的字段,如果字段是结构类型,那么会返回numpy.recarray,如果是非结构类型,则会返回numpy.ndarray:
>>> recordarr = np.rec.array([('Hello', (1, 2)), ("World", (3, 4))], ... dtype=[('foo', 'S6'),('bar', [('A', int), ('B', int)])]) >>> type(recordarr.foo) <class 'numpy.ndarray'> >>> type(recordarr.bar) <class 'numpy.recarray'>
本文已收录于 http://www.flydean.com/05-python-structured-arrays/
最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!
欢迎关注我的公众号:「程序那些事」,懂技术,更懂你!