https://codeforces.ml/contest/505/problem/C
题意:
现有点\(0\)到点\(30000\),每个点都有一个权值。从点\(0\)开始跳,第一步跳\(d\)长。设上一步跳的长度为\(l\),那么下一步能在\([l - 1, l + 1]\)这个区间内选择一个值,以它为步长跳,但是要合法,即步长必须为正整数且不会跳出\(30000\)。
思路:
看着是很裸的\(dp\)或者记忆化搜索的做法,但\(n\)很大,直接\(O(n^2)\)跑过不去。观察一下步长,寻找一下不同的步长最多有多少个。从\(1\)开始,对公差为\(1\)的等差数列求和,发现在第\(245\)项时,和就会超过\(30000\)。但由于我们不知道具体会向哪边扩展,所以我们从\(d\)开始,向两边进行扩展,就能过滤掉永远取不到的步长,得到更优的决策集合,接下来大力推就行了。
#include <bits/stdc++.h> using namespace std; #define endl "\n" inline int rd() { int f = 0; int x = 0; char ch = getchar(); for (; !isdigit(ch); ch = getchar()) f |= (ch == '-'); for (; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - '0'; if (f) x = -x; return x; } typedef long long ll; const int inf = 0x3f3f3f3f; const ll INF = 0x3f3f3f3f3f3f3f3f; const int N = 3e4 + 7; int n, d; int dp[N][1000], p[N], id[N]; vector<int> G; void solve() { n = rd(); d = rd(); for (int i = 1; i <= n; ++i) { int q = rd(); p[q]++; } int tot = 0; for (int i = max(1, d - 246); i <= min(30000, d + 246); ++i) { G.push_back(i); id[i] = tot++; } memset(dp, -0x3f, sizeof(dp)); dp[d][ id[d] ] = p[d]; int ans = p[d]; for (int i = d; i <= 30000; ++i) { for (int j = 0; j < tot; ++j) { if (dp[i][j] < 0) continue; for (int k = -1; k <= 1; ++k) { int to = G[j] + k + i; if (to <= i || to > 30000) continue; dp[to][j + k] = max(dp[to][j + k], dp[i][j] + p[to]); ans = max(ans, dp[to][j + k]); } } } printf("%d\n", ans); } int main() { int t = 1; while (t--) solve(); return 0; }