2021年,真希望行业能春暖花开。
去年由于疫情的影响,无数行业都受到了影响,互联网寒冬下,许多程序员被裁,大环境格外困难。
我被公司裁掉后,便着急地开始找工作,一次次地碰壁,完全消磨掉了自己的信心,突然感受到,面试已经越来越难了。
于是,我开始调整状态,着重于深耕技术知识,似乎一切开始了好转,最后斩获p7岗offer。
于是乎,我想把我的学习经历以及面试几十家互联网企业总结下来的面试经历分享给我的同行(Java程序员),希望你在金三银四,感受春暖花开!
公司最近安排了一波商品抢购活动,由于后台小哥操作失误最终导致活动效果差,被用户和代理商投诉了。经理让我带同事们一起复盘这次线上事故。
抢购活动计划是零点准时开始,
22:00 运营人员通过后台将商品上线
23:00后台小哥已经将商品导入缓存中,提前预热
抢购开始的瞬间流量非常大,按计划是通过Redis承担大部分用户查询请求,避免请求全部落在数据库上。
如上图预期大部分请求会命中缓存,但是由于后台小哥预热缓存的时候将所有商品的缓存时间都设置为2小时过期,所有的商品在同一个时间点全部失效,瞬间所有的请求都落在数据库上,导致数据库扛不住压力崩溃,用户所有的请求都超时报错。
实际上所有的请求都直接落到数据库,如下图:
凌晨01:02 SRE 收到系统告警,登录运维管理系统发现数据库节点 CPU和内存飙升超过阈值,迅速联系后台开发人员定位排查。
由于缓存设置过期时间是2小时,凌晨1点前缓存可以命中大部分请求,数据库服务处于正常状态。
后台小哥通过日志定位排查发现问题后,进行了一系列操作:
首先通过API Gateway(网关)限制大部分流量进来
接着将宕机的数据库服务重启
再重新预热缓存
确认缓存和数据库服务正常后将网关流量正常放开,大约01:30 抢购活动恢复正常。
这次事故的原因其实就是出现了缓存雪崩,查询数据量巨大,请求直接落到数据库上,引起数据库压力过大宕机。
在业界解决缓存雪崩的方法其实比较成熟了,比如有:
(1)均匀过期
设置不同的过期时间,让缓存失效的时间点尽量均匀。通常可以为有效期增加随机值或者统一规划有效期。
(2)加互斥锁
跟缓存击穿解决思路一致,同一时间只让一个线程构建缓存,其他线程阻塞排队。
(3)缓存永不过期
跟缓存击穿解决思路一致,缓存在物理上永远不过期,用一个异步的线程更新缓存。
作为过来人,小编是整理了很多进阶架构视频资料、面试文档以及PDF的学习资料,针对上面一套系统大纲小编也有对应的相关进阶架构视频资料,如果**‘你’确定好自己未来的道路或者想学习提升自己技术栈、技术知识的小伙伴们可以点击这里来获取免费学习资料提升自己(全套面试文档、PDF、进阶架构视频)**
)**
[外链图片转存中…(img-GQNxHI9p-1619758416458)]
[外链图片转存中…(img-2DNkgDqe-1619758416459)]