本文将从以下四个方面来系统的讲解一下泛型,基本上涵盖了泛型的主体内容。
- 什么是泛型?
- 为什么要使用泛型?
- 如何使用泛型?
- 泛型的特性
泛型的英文是Generics,是指在定义方法、接口或类的时候,不预先指定具体的类型,而使用的时候再指定一个类型的一个特性。
写过Java代码的同学应该知道,我们在定义方法、接口或类的时候,都要指定一个具体的类型。比如:
public class test { private String name; public void setName(String name) { this.name = name; } public String getName() { return name; } }
上面代码就定义了字段name
的类型为String
,方法getName
的返回类型为String
,这种写法就是预先指定了具体的类型。而泛型就是不预先指定具体的类型。
Java
中有一个类型叫ArrayList
,相当于一个可变长度的数组。在ArrayList
类型中就没有预先指定具体的类型。因为数组可以存放任何类型的数据,如果要预先指定一个数组类型的话,那要满足大家对各种类型的需求,就要写很多类型的ArrayList
,要为每个class写一个单独的ArrayList
,比如:
IntegerArrayList
StringArrayList
FloatArrayList
LongArrayList
...
这显然不太现实,因为class有上千种,还有自己定义的class。那么在ArrayList
中预先指定具体的类型就无法满足需求。这个时候就需要使用泛型,即不指定存储数据的具体的类型,这个类型由使用者决定。
为了解决类型的问题,我们必须把ArrayList
变成一种模板:ArrayList<T>
,代码如下:
public class ArrayList<T> { private T[] array; private int size; public void add(T e) {...} public void remove(int index) {...} public T get(int index) {...} }
T
可以是任何class,这样一来,我们就实现了:编写一次模版,可以创建任意类型的ArrayList
:
// 创建可以存储String的ArrayList: ArrayList<String> strList = new ArrayList<String>(); // 创建可以存储Float的ArrayList: ArrayList<Float> floatList = new ArrayList<Float>(); // 创建可以存储Person的ArrayList: ArrayList<Person> personList = new ArrayList<Person>();
因此,泛型也可以说是定义一种模板,例如ArrayList<T>
,然后在代码中为用到的类创建对应的ArrayList<类型>
。(泛型是指在定义方法、接口或类的时候,不预先指定具体的类型,而使用的时候再指定一个类型的一个特性。)后面这种定义可能会更好理解其本质。
更为官方的定义是:泛型指“参数化类型”。泛型的本质是为了参数化类型(将类型参数化传递)(在不创建新的类型的情况下,通过泛型指定的不同类型来控制形参具体限制的类型)。也就是说在泛型使用过程中,操作的数据类型被指定为一个参数,这种参数类型,可以在类、接口和方法中,分别被称为泛型类,泛型接口,泛型方法。
参考自:Oracle 泛型文档
与非泛型的代码相比,使用泛型的代码具有很多优点:
在编译时会有更强的类型检查
Java编译器对泛型代码进行强类型检查,如果代码违反类型安全,则会发出错误。修复编译时的错误比修复运行时的错误会更加简单,运行时的错误会更难找到。
说人话就是,使用泛型时,编译器会对输入的类型的进行检查,类型与声明的类型不一致时就会报错。而不使用泛型,编译器可能就检测不到这个类型错误,就会在运行的时候报错。
消除类型转换
下面的代码是没有使用泛型的情况,这时候需要对类型进行转换
List list = new ArrayList(); list.add("hello"); String s = (String) list.get(0);
使用泛型,就不需要对类型进行转换
List<String> list = new ArrayList<String>(); list.add("hello"); String s = list.get(0); // no cast
可以实现更通用的算法
通过使用泛型,程序员可以对不同类型的集合进行自定义操作以实现通用算法,并且代码类型会更加安全、代码更易读
还是以ArrayList
为例,如果不定义泛型类型时,泛型类型此时就是Object
:
// 编译器警告: List list = new ArrayList(); list.add("Hello"); list.add("World"); String first = (String) list.get(0); String second = (String) list.get(1);
此时,只能把<T>
当作Object
使用,没有发挥泛型的优势。
当我们定义泛型类型<String>
后,List<T>
的泛型接口变为强类型List<String>
:
// 无编译器警告: List<String> list = new ArrayList<String>(); list.add("Hello"); list.add("World"); // 无强制转型: String first = list.get(0); String second = list.get(1);
编译器看到泛型类型List<String>
就可以自动推断出后面的ArrayList<T>
的泛型类型必须是ArrayList<String>
,因此,可以把代码简写为:
// 可以省略后面的Number,编译器可以自动推断泛型类型: List<String> list = new ArrayList<>();
泛型类的语法形式:
class name<T1, T2, ..., Tn> { /* ... */ }
泛型类的声明和非泛型类的声明类似,除了在类名后面添加了类型参数声明部分。由尖括号(<>
)分隔的类型参数部分跟在类名后面。它指定类型参数(也称为类型变量)T1,T2,...和 Tn。
一般将泛型中的类名称为原型,而将 <>
指定的参数称为类型参数。
在泛型出现之前,一个类要想处理所有类型的数据,只能使用Object
做数据转换。实例如下:
public class Info { private Object value; public Object getValue() { return value; } public void setValue(Object value) { this.value = value; } }
使用泛型之后,其实就是将Object
换成T
,并声明<T>
:
public class Info<T> { private T value; public T getValue() { return value; } public void setValue(T value) { this.value = value; } }
在上面的例子中,在初始化一个泛型类时,使用 <>
指定了内部具体类型,在编译时就会根据这个类型做强类型检查。
实际上,不使用 <>
指定内部具体类型,语法上也是支持的(不推荐这么做),这样的调用就失去泛型类型的优势。如下所示:
public static void main(String[] args) { Info info = new Info(); info.setValue(10); System.out.println(info.getValue()); info.setValue("abc"); System.out.println(info.getValue()); }
上面是单个类型参数的泛型类。
下面我们看一下多个类型参数的泛型类该如何编写。
例如,我们定义Pair
不总是存储两个类型一样的对象,就可以使用类型<T, K>
:
public class Pair<T, K> { private T first; private K last; public Pair(T first, K last) { this.first = first; this.last = last; } public T getFirst() { return first; } public K getLast() { return last; } }
使用的时候,需要指出两种类型:
Pair<String, Integer> p = new Pair<>("test", 123);
Java标准库的Map<K, V>
就是使用两种泛型类型的例子。它对Key使用一种类型,对Value使用另一种类型。
小结
编写泛型时,需要定义泛型类型<T>
;
泛型可以同时定义多种类型,例如Map<K, V>
。
接口也可以声明泛型。
泛型接口语法形式:
public interface Content<T> { T text(); }
泛型接口有两种实现方式:
实现接口的子类明确声明泛型类型
预先声明继承的具体类型的接口类,下面就是继承的Integer
类型的接口类。
public class IntContent implements Content<Integer> { private int text; public IntContent(int text) { this.text = text; } @Override public Integer text() { return text; } }
因为子类并没有泛型类型,所以正常使用就行。
InContent ic = new IntContent(10);
实现接口的子类不明确声明泛型类型
public class GenericsContent<T> implements Content<T> { private T text; public GenericsContent(T text) { this.text = text; } @Override public T text() { return text; } }
此时子类也使用了泛型类型,就需要指定具体类型
Content<String> gc = new GenericsContent<>("ABC");
泛型方法是引入其自己的类型参数的方法。泛型方法可以是普通方法、静态方法以及构造方法。
泛型方法语法形式如下:
public <T> T func(T obj) {}
注意:是否拥有泛型方法,与其所在的类是否是泛型没有关系。
泛型方法的语法包括一个类型参数列表,在尖括号内,它出现在方法的返回类型之前。对于静态泛型方法,类型参数部分必须出现在方法的返回类型之前。类型参数能被用来声明返回值类型,并且能作为泛型方法得到的实际类型参数的占位符。
使用泛型方法的时候,通常不必指明类型参数,因为编译器会为我们找出具体的类型。这称为类型参数推断(type argument inference)。类型推断只对赋值操作有效,其他时候并不起作用。如果将一个泛型方法调用的结果作为参数,传递给另一个方法,这时编译器并不会执行推断。
编译器会认为:调用泛型方法后,其返回值被赋给一个 Object 类型的变量。
public class GenericsMethodDemo01 { public static <T> void printClass(T obj) { System.out.println(obj.getClass().toString()); } public static void main(String[] args) { printClass("abc"); printClass(10); } } // Output: // class java.lang.String // class java.lang.Integer
泛型方法中也可以使用可变参数列表
public class GenericVarargsMethodDemo { public static <T> List<T> makeList(T... args) { List<T> result = new ArrayList<T>(); Collections.addAll(result, args); return result; } public static void main(String[] args) { List<String> ls = makeList("A"); System.out.println(ls); ls = makeList("A", "B", "C"); System.out.println(ls); } } // Output: // [A] // [A, B, C]
Java 语言引入泛型是为了在编译时提供更严格的类型检查,并支持泛型编程。不同于 C++ 的模板机制,Java 泛型是使用类型擦除来实现的,使用泛型时,任何具体的类型信息都被擦除了。
那么,类型擦除做了什么呢?它做了以下工作:
<>
的内容。比如 T get()
方法声明就变成了 Object get()
;List<String>
就变成了 List
。如有必要,插入类型转换以保持类型安全。Java 泛型的实现方式不太优雅,但这是因为泛型是在 JDK5 时引入的,为了兼容老代码,必须在设计上做一定的折中。
简单来说类型擦除是指,虚拟机对泛型其实一无所知,所有的工作都是编译器做的。
例如,我们编写了一个泛型类Pair<T>
,这是编译器看到的代码:
public class Pair<T> { private T first; private T last; public Pair(T first, T last) { this.first = first; this.last = last; } public T getFirst() { return first; } public T getLast() { return last; } }
而虚拟机根本不知道泛型。这是虚拟机执行的代码:
public class Pair { private Object first; private Object last; public Pair(Object first, Object last) { this.first = first; this.last = last; } public Object getFirst() { return first; } public Object getLast() { return last; } }
因此,Java使用类型擦拭实现泛型,导致了:
<T>
视为Object
;<T>
实现安全的强制转型。因此,Java使用擦拭法实现泛型,导致了:
<T>
视为Object
;<T>
实现安全的强制转型。使用泛型的时候,我们编写的代码也是编译器看到的代码:
Pair<String> p = new Pair<>("Hello", "world"); String first = p.getFirst(); String last = p.getLast();
而虚拟机执行的代码并没有泛型:
Pair p = new Pair("Hello", "world"); String first = (String) p.getFirst(); String last = (String) p.getLast();
所以,Java的泛型是由编译器在编译时实行的,编译器内部永远把所有类型T
视为Object
处理,但是,在需要转型的时候,编译器会根据T
的类型自动为我们实行安全地强制转型。
泛型的局限
了解了Java泛型的实现方式——类型擦除,我们就知道了Java泛型的局限:
局限一:<T>
不能是基本类型,例如int
,因为实际类型是Object
,Object
类型无法持有基本类型:
Pair<int> p = new Pair<>(1, 2); // compile error!
局限二:无法取得带泛型的Class
。观察以下代码:
public class test { public static void main(String[] args) { List<Object> list1 = new ArrayList<Object>(); List<String> list2 = new ArrayList<String>(); System.out.println(list1.getClass()); System.out.println(list2.getClass()); } } // Output: // class java.util.ArrayList // class java.util.ArrayList
因为T
是Object
,我们对ArrayList<Object>
和ArrayList<String>
类型获取Class
时,获取到的是同一个Class
,也就是ArrayList
类的Class
。
换句话说,所有泛型实例,无论T
的类型是什么,getClass()
返回同一个Class
实例,因为编译后它们全部都是ArrayList<Object>
。
局限三:无法判断带泛型的类型:
List<Integer> p = new ArrayList<>(); // Compile error: if (p instanceof List<String>) { }
原因和前面一样,并不存在List<String>.class
,而是只有唯一的List.class
。
泛型和继承
正是由于泛型时基于类型擦除实现的,所以,泛型类型无法向上转型。
向上转型是指用子类实例去初始化父类,这是面向对象中多态的重要表现。
Integer
继承了 Object
;ArrayList
继承了 List
;但是 List<Interger>
却并非继承了 List<Object>
。
这是因为,泛型类并没有自己独有的 Class
类对象。比如:并不存在 List<Object>.class
或是 List<Interger>.class
,Java 编译器会将二者都视为 List.class
。
在使用泛型的时候,我们还可以为传入的泛型类型实参进行上下边界的限制,如:类型实参只准传入某种类型的父类或某种类型的子类。
extend通配符
为泛型添加上边界,即传入的类型实参必须是指定类型的子类型
// 可以限制传入方法的参数的类型 <? extends xxx> // 也可以限制T的类型 <T extends XXX> // 类型边界可以设置多个,语法形式如下: <T extends B1 & B2 & B3>
注意:extends 关键字后面的第一个类型参数可以是类或接口,其他类型参数只能是接口。
<? extends xxx>
举个例子:
public class test { public static void main(String[] args) { Pair<Integer> p = new Pair<>(123, 456); int n = add(p); System.out.println(n); } static int add(Pair<? extends Number> p) { Number first = p.getFirst(); Number last = p.getLast(); return first.intValue() + last.intValue(); } } class Pair<T> { private T first; private T last; public Pair(T first, T last) { this.first = first; this.last = last; } public T getFirst() { return first; } public T getLast() { return last; } }
通过使用<? extends Number>
,我们可以传入Number
类型的子类类型的数组。就可以执行数值类型的加法。
这种使用<? extends Number>
的泛型定义称之为上界通配符(Upper Bounds Wildcards),即把泛型类型T
的上界限定在Number
了。除了可以传入Pair<Integer>
类型,我们还可以传入Pair<Double>
类型,Pair<BigDecimal>
类型等等,因为Double
和BigDecimal
都是Number
的子类。
如果我们考察对Pair<? extends Number>
类型调用getFirst()
方法,实际的方法签名变成了:
<? extends Number> getFirst();
接下来,我们再来考察一下Pair<T>
的set
方法:
public class test { public static void main(String[] args) { Pair<Integer> p = new Pair<>(123, 456); int n = add(p); System.out.println(n); } static int add(Pair<? extends Number> p) { Number first = p.getFirst(); Number last = p.getLast(); p.setFirst(new Integer(first.intValue() + 100)); p.setLast(new Integer(last.intValue() + 100)); return p.getFirst().intValue() + p.getFirst().intValue(); } } class Pair<T> { private T first; private T last; public Pair(T first, T last) { this.first = first; this.last = last; } public T getFirst() { return first; } public T getLast() { return last; } public void setFirst(T first) { this.first = first; } public void setLast(T last) { this.last = last; } } // 会得到一个编译错误 // The method setFirst(capture#3-of ? extends Number) in the type Pair<capture#3-of ? extends Number> is not applicable for the arguments (int)Java(67108979)
编译错误的原因在于,如果一开始我们传入的p
是Pair<Double>
,显然它满足参数定义Pair<? extends Number>
,然而,Pair<Double>
的setFirst()
显然无法接受Integer
类型。
这就是<? extends Number>
通配符的一个重要限制:方法参数签名setFirst(? extends Number)
无法传递任何Number
的子类型给setFirst(? extends Number)
。
这里唯一的例外是可以给方法参数传入null
:
p.setFirst(null); // ok, 但是后面会抛出NullPointerException p.getFirst().intValue(); // NullPointerException
使用extends限定T类型
在定义泛型类型Pair<T>
的时候,也可以使用extends
通配符来限定T
的类型:
public class Pair<T extends Number> { ... }
现在,我们只能定义:
Pair<Number> p1 = null; Pair<Integer> p2 = new Pair<>(1, 2); Pair<Double> p3 = null;
因为Number
、Integer
和Double
都符合<T extends Number>
。
非Number
类型将无法通过编译:
Pair<String> p1 = null; // compile error! Pair<Object> p2 = null; // compile error!
因为String
、Object
都不符合<T extends Number>
,因为它们不是Number
类型或Number
的子类。
小结
使用类似<? extends Number>
通配符作为方法参数时表示:
Number
引用的方法,例如:Number n = obj.getFirst();
;Number
引用的方法(null
除外),例如:obj.setFirst(Number n);
。即一句话总结:使用extends
通配符表示可以读,不能写。
使用类似<T extends Number>
定义泛型类时表示:
Number
以及Number
的子类。super 下界通配符
将未知类型限制为该类型的特定类型或超类类型。
和extends
通配符相反,这次,我们希望接受Pair<Integer>
类型,以及Pair<Number>
、Pair<Object>
,因为Number
和Object
是Integer
的父类,setFirst(Number)
和setFirst(Object)
实际上允许接受Integer
类型。
我们使用super
通配符来改写这个方法:
void set(Pair<? super Integer> p, Integer first, Integer last) { p.setFirst(first); p.setLast(last); }
注意到Pair<? super Integer>
表示,方法参数接受所有泛型类型为Integer
或Integer
父类的Pair
类型。
这里注意到我们无法使用Integer
类型来接收getFirst()
的返回值,即下面的语句将无法通过编译:
Integer x = p.getFirst();
因为如果传入的实际类型是Pair<Number>
,编译器无法将Number
类型转型为Integer
。
因此,使用<? super Integer>
通配符表示:
set(? super Integer)
方法传入Integer
的引用;get()
方法获得Integer
的引用。唯一例外是可以获取Object
的引用:Object o = p.getFirst()
。
换句话说,使用<? super Integer>
通配符作为方法参数,表示方法内部代码对于参数只能写,不能读。
对比extends和super通配符
我们再回顾一下extends
通配符。作为方法参数,<? extends T>
类型和<? super T>
类型的区别在于:
<? extends T>
允许调用读方法T get()
获取T
的引用,但不允许调用写方法set(T)
传入T
的引用(传入null
除外);<? super T>
允许调用写方法set(T)
传入T
的引用,但不允许调用读方法T get()
获取T
的引用(获取Object
除外)。一个是允许读不允许写,另一个是允许写不允许读。
我们已经讨论了<? extends T>
和<? super T>
作为方法参数的作用。实际上,Java的泛型还允许使用无限定通配符(Unbounded Wildcard Type),即只定义一个?
:
void sample(Pair<?> p) { }
因为<?>
通配符既没有extends
,也没有super
,因此:
set(T)
方法并传入引用(null
除外);T get()
方法并获取T
引用(只能获取Object
引用)。无界通配符有两种应用场景:
语法形式:<?>
public class GenericsUnboundedWildcardDemo { public static void printList(List<?> list) { for (Object elem : list) { System.out.print(elem + " "); } System.out.println(); } public static void main(String[] args) { List<Integer> li = Arrays.asList(1, 2, 3); List<String> ls = Arrays.asList("one", "two", "three"); printList(li); printList(ls); } } // Output: // 1 2 3 // one two three
小结
使用类似<? super Integer>
通配符作为方法参数时表示:
Integer
引用的方法,例如:obj.setFirst(Integer n);
;Integer
引用的方法(Object
除外),例如:Integer n = obj.getFirst();
。即使用super
通配符表示只能写不能读。
无限定通配符<?>
很少使用,可以用<T>
替换,同时它是所有<T>
类型的超类。
泛型一些约定俗成的命名(实际并无意义,但是建议对应着来命名泛型):
理解泛型之后可以方便我们更好的阅读Java框架的源码,实际编程来说不一定会用到,但是可以用到泛型编程的地方,建议使用,可以简化代码。
- 廖雪峰Java
- 深入理解Java泛型
- Oracle Java文档