欠拟合(underfitting): \(E_{\text {in}}\)较高,\(E_{\text {out}}\)也较高。
过拟合(overfitting): \(E_{\text {in}}\)较低,\(E_{\text {out}}\)却较高。(例如数据中有噪声,却使用了高次多项式非线性转换,便会出现过拟合)
常见的过拟合原因有:数据量(data size)太少,随机噪声(stochastic noise)太大,目标函数(deterministic noise)太复杂,dvc过高(excessive power)。
示例如下:
一般而言欠拟合很好处理。过拟合却很难解决,比较实用的解决方案有以下五个:
其中数据清理实际上就是纠正数据错误,而数据裁剪便是删除无用或冗余样本。而数据提示则是数据构造(加入构造样本),以图像处理为例:可以通过移动或旋转(shifting/rotating)已知图像构造虚拟样本数据。
下面介绍两个实用的工具正则化与验证。
正则化的本质是减少无用项的比重,从而减小 $d_{\mathbf{vc}} $ ,进而抑制过拟合。最理想的状态是通过学习使得某些不重要的项的系数为0,但是这是一种 NP-hard 问题,所以降低要求至减小比重。
\[\begin{array} { r l } \min _ { \mathbf { w } \in \mathbb { R } ^ { Q + 1 } } & E _ { \text {in } } ( \mathbf { w } ) = \frac { 1 } { N } \underbrace { \sum _ { n = 1 } ^ { N } \left( \mathbf { w } ^ { T } \mathbf { z } _ { n } - y _ { n } \right) ^ { 2 } } _ { ( \mathbf { Z } \mathbf { w } - \mathbf { y } ) ^ { T } ( \mathbf { Z } \mathbf { w } - \mathbf { y } ) } \\ \text { s.t. } & \underbrace { \sum _ { q = 0 } ^ { Q } w _ { q } ^ { 2 } } _ { \mathbf { w } ^ { T } \mathbf { w } } \leq C \end{array} \]这个限制实际上是将比重系数限制在半径为 \(\sqrt{C}\) 的球体内。所以优化结果转换为 regularized hypothesis \(\mathbf{w}_{REG}\)(optimal solution from regularized hypothesis set \(H(C)\))。
可见这是一个有条件最优化问题,经典的解法是使用拉格朗日乘数。即找一个拉个朗日乘数(Lagrange multiplier)\(\lambda > 0\) 和 \(\mathbf { w } _ { \mathrm { REG } }\) 使得:
\[\nabla E _ { \text {in } } \left( \mathbf { w } _ { \mathrm { REG } } \right) + \frac { 2 \lambda } { N } \left| \mathbf { w } _ { \mathrm { REG } } \right| = \mathbf { 0 } \]当现在有一个球需要向负梯度方向(谷底)滚,但是呢现在有一个限制条件,不能超出半径为 \(\sqrt{C}\) 的球,所以在球的最佳位置是满足条件且不能往下滚,现在有两种状态一种是谷底在这个限制的球内,那么无所谓。如果在球外呢,便需要找出一个球边界上的点,并且该点的负梯度方向为球切面的法向量,这样的话便会满足条件且无法滚动(会导致出界)。
根据上述拉格朗日乘数方程,可以写出:
\[\nabla E _ { \mathrm { in } } \left( \mathbf { w } _ { \mathrm { REG } } \right) + \frac { 2 \lambda } { N } \mathbf { w } _ { \mathrm { REG } } = \mathbf { 0 }\\ \frac { 2 } { N } \left( \mathrm { Z } ^ { T } \mathrm { ZW } _ { \mathrm { REG } } - \mathrm { Z } ^ { T } \mathbf { y } \right) + \frac { 2 \lambda } { N } { \mathbf { W } _ { \mathrm { REG } } } = \mathbf { 0 } \]可以看出这是根据 \(\mathbf { w } _ { \mathrm { REG }}\) 的 一个一元一次线性方程,所以可以解得:
\[\mathbf { w } _ { \mathrm { REG } } \leftarrow \left( \mathrm { Z } ^ { T } \mathrm { Z } + \lambda \mathrm { I } \right) ^ { - 1 } \mathrm { Z } ^ { T } \mathbf { y } \]这个在统计上叫做岭回归(ridge regression)。其中\(\mathrm { Z } ^ { T } \mathrm { Z }\)是正半定的,\(\lambda \mathrm { I }\)是正定的,所以两者相加一定有逆。
实际上上述拉格朗日乘数方程,等同于下面这个优化问题
\[E _ { \text {in } } ( \mathbf { w } ) + \underbrace{\frac { \lambda } { N } \overbrace { \mathbf { w } ^ { T } \mathbf { w } }^{\text{regularier}}}_{\text{augmented error } E _ { \text {aug } }} \]所以将有约束的最优化问题转换为用扩大误差的正则化(regularization with augmented error instead of constrained \(E_{\text{in}}\))
\[\mathbf { w } _ { \mathrm { REG }} \leftarrow \mathop { \text{argmin} }_{\mathbf{w}} E _ { \text {aug } } \text{ for given }\lambda > 0 \text { or } \lambda = 0 \]即最小化无约束 \(E _ { \text {aug } }\) 可以有效的最小化有约束的\(E_{\text{in}}\) (minimizing unconstrained \(E _ { \text {aug } }\) effectively minimizes some C-constrained \(E_{\text{in}}\).)
因为该正则化方法有效的减小了无用项权重系数的大小,所以 \(+ \frac { \lambda } { N } \mathbf { w } ^ { T } \mathbf { w }\) 又叫做权重衰减正则化(weight-decay regularization)。
单纯的多项式转换(naïve polynomial transform):
\[\Phi ( x ) = \left( 1 , x , x ^ { 2 } , \ldots , x ^ { Q } \right) \]当\(x _ { n } \in [ - 1 , + 1 ] , x _ { n } ^ { q }\) 非常小,需要很大的 \(\mathbf{w}_q\),但是正则化项却限制了这一行为。这时便提出另一种多项式转换: 归一化多项式转换(normalized polynomial transform):
\[\Phi ( x ) = \left( 1 , L _ { 1 } ( x ) , L _ { 2 } ( x ) , \ldots , L _ { Q } ( x ) \right) \]这叫 正交基函数 ‘orthonormal basis functions’,该多项式叫做勒让德多项式(Legendre polynomials)。
minimizing \(E _ { \text {aug } }\) 的三个不同的理解
正则化的目标是限制目标函数的 ‘ 学习方向 ’(constraint in the ‘direction’ of target function)。
正则化有三个特性:
值得注意的是正则项中的的 \(\lambda\) 可以控制正则项的权重或者影响,如果感觉正则项有不好的影响的话,可以尝试调低\(\lambda\) 。
示意图如下:
其惩罚项表达式如下:
\[\Omega ( \mathbf { w } ) = \sum _ { q = 0 } ^ { Q } \left| w _ { q } \right| = \| \mathbf { w } \| _ { 1 } \]可见这是一个凸函数(convex,),但不是随处可微的(not differentiable everywhere,比如顶点上)。值得注意的是其解的稀疏性(sparsity in solution),这是因为最优解常常在顶点上,也就是说某些项为零。所以说L1范数正则化常常用于稀疏解(sparse solution)。
示意图如下:
其惩罚项表达式如下:
\[\Omega ( \mathbf { w } ) = \sum _ { q = 0 } ^ { Q } w _ { q } ^ { 2 } = \| \mathbf { w } \| _ { 2 } ^ { 2 } \]因为该正则化方法有效的减小了无用项权重系数的大小,所以 L2 范数正则化又叫做权重衰减正则化(weight-decay regularization)。
在随机噪声(stochastic noise)下的\(\lambda\) 调节曲线图:
在确定噪声(deterministic noise)下的\(\lambda\) 调节曲线图:
可见噪声越大,应当使用更多的正则化。但是噪声是不知道,如何进行选择呢,这便用到了下一节课的交叉验证进行模型选择了。
验证实际上就是为了解决模型选择的问题(Model Selection Problem),当然在可行性分析时有证明说,当 \(N\) (数据量)足够多时,机器学习可以保证\(E_{\text {in}} \approx E_{\text {out}}, E_{\text {in}} \approx 0\),即 \(E_{\text {out}} \approx 0\) 所以说呢,只需要保证最佳的 \(E_{\text {in}}\) 即可。但是这有一个前提那就是 \(N\) (数据量)足够多,实际生活中真的能保证数据足够多吗,答案是并不能,而且很有可能会为此付出过拟合的代价。
一个简答的方法便是针对测试集进行测试,验证模型的准确率。即使用 \(\mathcal{D} _ { \text {test } }\) 去求取 \(E _ { \text {test } }\),从而选择最优的模型。
\[m ^ { * } = \underset { 1 \leq m \leq M } { \operatorname { argmin } } \left( E _ { m } = E _ { \text {test } } \left( \mathcal { A } _ { m } ( \mathcal { D } ) \right) \right) \]并且可以保证泛化性(generalization guarantee),可以通过有限海弗丁不等式 (finite-bin Hoeffding)求得:
\[E _ { \mathrm { out } } \left( g _ { m ^ { * } } \right) \leq E _ { \mathrm { test } } \left( g _ { m ^ { * } } \right) + O ( \sqrt { \frac { \log M } { N _ { \mathrm { test } } } } ) \]但是真的可以使用 \(E _ { \text {test } }\) 来测试,答案仍然是否定的,因为 \(\mathcal{D} _ { \text {test } }\) 是无法获得的(infeasible & cheating)。
所以这里提出一种想法 通过验证集(validation set) \(\mathcal { D }_{\text{val}} \in \mathcal { D },\mathcal { D } _ { \mathrm { val } } \stackrel { \text { iid } } { \sim } P ( \mathbf { x } , y ),\text{select K examples from } \mathcal{D} \text { at random}\),计算$ E_{\text{val}}$,来筛选模型,但是 \(\mathcal { D }_{\text{val}}\) 不可被\(\mathcal { A }_{\text{m}}\)(学习算法)用于模型训练,也就是说\(\mathcal { D }_{\text{val}} \cap \mathcal { D }_{\text{train}} = \empty , \mathcal { D }_{\text{val}} \cup \mathcal { D }_{\text{train}} = \mathcal { D }\)。这样一来保证了验证数据不可知(干净,clean),二来验证数据是可以获得的,是一种合法的欺骗(legal cheating)。
基本的结构如下所示:
\[\begin{array}{ c c c c c } E_{\text {in}}(h) &&&& E_{\text {val}}(h)\\ \uparrow &&&& \uparrow \\ \underbrace { \mathcal { D } } _ { \text {size } N } &\rightarrow &\underbrace { \mathcal { D } _ { \text {train } } } _ { \text {size } N - K } &\cup &\underbrace { \mathcal { D } _ { \text {val } } } _ { \text {size } K }\\ \downarrow && \downarrow && \\ g _ { m } = \mathcal { A } _ { m } ( \mathcal { D } ) &&g _ { m } ^ { - } = \mathcal { A } _ { m } \left( \mathcal { D } _ { \text {train } } \right)&& \end{array} \]最终使用海弗丁不等式可以保证:
\[E _ { \mathrm { out } } \left( g _ { m } ^ { - } \right) \leq E _ { \mathrm { val } } \left( g _ { m } ^ { - } \right) + O ( \sqrt { \frac { \log M } { K } } ) \]从 \(N - K\) 到 \(N\) 的启发式增益(heuristic gain)变化为:
\[E _ { \text {out } } ( \underbrace { g _ { m ^ { * } } } _ { A _ { m ^ { * } } ( \mathcal { D } ) } ) \leq E _ { \text {out } } ( \underbrace { g _ { m ^ { * } } ^ { - } } _ { A _ { m ^ { * } } \left( \mathcal { D } _ { \text {tann } } \right) } ) \]进一步可以得出以下关系:
\[E _ { \mathrm { out } } \left( g _ { m ^ { * } } \right) \leq E _ { \mathrm { out } } \left( g _ { m ^ { * } } ^ { - } \right) \leq E _ { \mathrm { val } } \left( g _ { m ^ { * } } ^ { - } \right) + O ( \sqrt { \frac { \log M } { K } } ) \]即训练数据越多,学习算法选择的 \(g\) (best hypothesis)便越好。所以实用的验证使用流图如下,在获得 \(g _ { m ^ { * } } ^ { - }\) 后再求取\(g _ { m ^ { * } }\),一般来说会获得更优的效果:
那在实际中K应当如何选择呢,下面以在 \(\mathcal { H } _ { \boldsymbol { \Phi } _ { 5 } }\) 和 \(\mathcal { H } _ { \boldsymbol { \Phi } _ { 10 } }\) 选择最优模型为例,变化曲线图如下:
其中 \(g_{\hat m}\) 指的是使用 \(E_{\text{in}}\) 选择最优模型,\(g _ { m ^ { * } } ^ { - }\) 指的是使用 \(E_{\text{val}}\) 选择和使用 \(\mathcal{D}_{\text{train}}\) 训练的最优模型,\(g _ { m ^ { * } }\) 指的是使用 \(E_{\text{val}}\) 选择和使用 \(\mathcal{D}\) 训练的最优模型,而 optimal 指的是使用 \(E_{\text{test}}\) 选择的最优模型输出的 \(E_{\text{out}}\)(不可能达到的最优值)。
可见 \(E_{\text{out}}(g _ { m ^ { * } } ^ { - }) > E_{\text{out}}(g _ { m ^ { * } } )\),证明了使用验证集进行模型选择的可行性。
同时随着验证集大小 \(K\) 的增加, \(g _ { m ^ { * } } ^ { - }\) 的 \(E_{\text{out}}\) 不断增加,这是由于验证集越大,训练集越小,训练出来的模型精度越差(\(g\) 与 \(g^-\)的差距越大)。而验证集越小,训练集越大,在全局数据下模型精度越高(\(g\) 与 \(g^-\)的差距越小)。这便是矛盾的地方,因为当验证集越大时,\(g^-\)的 \(E_{\text{out}}\) 与 \(E_{\text{val}}\) 更相近,即 \(E_{\text{val}}\) 更能代表 \(E_{\text{out}}\) 但不能代表 \(g\) 的 \(E_{\text{out}}\)。
\[E _ { \text {out } } ( g ) \quad \mathop{\approx}_{(\text{small }K)} \quad E _ { \text {out } } \left( g ^ { - } \right) \quad \mathop{\approx}_{(\text{big }K)} \quad E _ { \text {val } } \left( g ^ { - } \right) \]实践经验(practical rule of thumb)选择:\(K = \frac{N}{5}\)。
那怎么才能使得\(E _ { \text {val } }(g^{-}) \approx E _ { \mathrm { out } } ( g )\)呢,这便是LOO交叉验证的由来:
\[E _ { \text {loocv } } ( \mathcal { H } , \mathcal { A } ) = \frac { 1 } { N } \sum _ { n = 1 } ^ { N } e _ { n } = \frac { 1 } { N } \sum _ { n = 1 } ^ { N } \operatorname { err } \left( g _ { n } ^ { - } \left( \mathbf { x } _ { n } \right) , y _ { n } \right) \mathop{\approx}^{\text{hope}} E_{\text{out}}(g) \]实际上就是每次取出一个样本作为验证集,使用剩下的 \(N-1\) 个作为训练集,计算 \(E _ { \text {val }}\),最后针对全部的样本计算平均值。下面进行证明(\(\mathop{\mathcal { E }} _ { \mathcal { D } }\) 指的是在数据集\(\mathcal{D}\)上取结果的平均):
\[\begin{aligned} \mathop{\mathcal { E }} _ { \mathcal { D } } E _ { \operatorname { loocv } } ( \mathcal { H } , \mathcal { A } ) &= \mathop{\mathcal { E }} _ { \mathcal { D } } \frac { 1 } { \mathcal { N } } \sum _ { n = 1 } ^ { N } e _ { n } = \frac { 1 } { N } \sum _ { n = 1 } ^ { N } \mathop{\mathcal { E }} _ { \mathcal { D } } e _ { n } \rightarrow 由于独立同分布(iid)所以 \mathop{\mathcal { E }} _ { \mathcal { D } }可拆为\mathop{\mathcal { E }} _ { \mathcal { D_n } }\mathop{\mathcal { E }} _ { \mathcal { (\mathbf{x}_n, y_n) } } \\ &= \frac { 1 } { N } \sum _ { n = 1 } ^ { N } \mathop{\mathcal { E }} _ { \mathcal { D_n } } \underbrace{\mathop{\mathcal { E }} _ { \mathcal { (\mathbf{x}_n, y_n) } } \operatorname { err } \left( g _ { n } ^ { - } \left( \mathbf { x } _ { n } \right) , y _ { n } \right) } \\ & = \frac { 1 } { N } \sum _ { n = 1 } ^ { N } \mathop{\mathcal { E }} _ { \mathcal { D_n} } \quad \quad \quad E _ { \text {out } } \left( g _ { n } ^ { - } \right) \rightarrow 一个固定的g在各式各样的样本下的误差均值 \\ & = \frac { 1 } { N } \sum _ { n = 1 } ^ { N } \overline { E _ { \text {out } } } ( N - 1 ) = \overline { E _ { \text {out } } } ( N - 1 ) \end{aligned} \]同时当 \(N\) 相当大时,\(\overline { E _ { \text {out} } } ( N - 1 ) \approx \overline { E _ { \text {out} } } ( N )\),所以 \(E _ { \text {loocv } } ( \mathcal { H } , \mathcal { A } ) \approx E_{\text{out}}(g^{-})\) 又叫 \(E_{\text{out}}(g)\) 的无偏估计。
V折交叉验证(V-fold cross-validation):将 \(\mathcal{D}\) 随机分为 V 块, 依次拿 V - 1 份进行训练 和 1 份进行测试。
\[E _ { \mathrm { cv } } ( \mathcal { H } , \mathcal { A } ) = \frac { 1 } { V } \sum _ { v = 1 } ^ { V } E _ { \mathrm { val } } ^ { ( v ) } \left( g _ { v } ^ { - } \right) \]并依此找最优模型:
\[m ^ { * } = \underset { 1 \leq m \leq M } { \operatorname { argmin } } \left( E _ { m } = E _ { \mathrm { cv } } \left( \mathcal { H } _ { m } , \mathcal { A } _ { m } \right) \right) \]实践经验(practical rule of thumb)选择:\(V = 5 \text{ or } 10\)。