python是面向对象的语言,那么究竟什么是面向对象?
类:在中文中的定义,许多相同或相似事物的综合。根据这个定义,类是许多相同或相似的实物聚在一起的。譬如,人类,鸟类,花类等。
类的单个具体实例可以称之为对象,把类具体化单个实体的过程,这个过程称为类的实例化!
面向对象程序设计中的术语对象基本上可以看做数据(特性)以及由一系列可以存取,操作这些数据的方法所组成的集合。
面向对象的三个基本特征:封装,继承,多态。
创建对象的过程称之为实例化,当一个对象被创建之后,包含三个方面的特性:对象的句柄,属性和方法。对象的句柄用于区分不同的对象,当对象被创建后,该对象会获取一块存储空间,存储空间的地址即为对象的标识。
class People(object): def __init__(self,country, name,age=23): #构造方法 self.country = country #实例属性 self.name = name self.__age = age #私有属性 def __del__(self): #析构函数 print("%s has died" % self.name) def get_info(self): #实例方法 print("The %s info".center(50,"-") % self.name) print("The %s comes from %s, is %d old" % (self.name, self.country, self.__age))
实例化上面的类,
>>> a = People("China","hitler",20) #实例化一个类时,这时候构造函数会自动执行>>> a.get_info() #通过实例访问类中的实例方法-------------------The hitler info--------------------The hitler comes from China, is 20 old
在类中定义属性时,若属性是以双下划线开始的则为私有属性,例如self.__age属性,而像self.country和self.name属性则是公有属性,无论是私有属性还是公有属性,每个通过实例化得到的类都有这些属性。
在实例化时,我们可以像给函数传入参数那样,给类传入参数,而这些参数的最终被赋值的操作就是在构造函数中执行的。构造函数在类实例化的时候会自动执行。
注意私有属性和实例属性的访问方法的不同:
>>> a.name #访问实例属性'hitler'>>> a.country #访问实例属性'China'>>> a.__age #方位私有属性Traceback (most recent call last): File "", line 1, in AttributeError: 'People' object has no attribute '__age'>>> a._People__age #私有属性的访问方法,实例化名._类名__私有属性名20 >>> del a #删除一个实例,这时候,析构函数会自动执行hitler has died#析构函数:在实例销毁的时候自动执行的,通常用于做一些收尾的工作,关闭一些数据库连接或者关闭打开的临时文件。
析构函数:在实例销毁的时候自动执行的,通常用于做一些收尾的工作,关闭一些数据库连接或者关闭打开的临时文件。
在上面的例子中,使用del删除了实例a,然后会自动返回析构函数执行的结果。
可以对实例进行增加,删除,修改操作:
对象属性的增删改>>> A = People("USA", "jobs", "53") >>> A.country #可以通过实例修改对应的属性值'USA'>>> A.country = "UKA" >>> A._People__age = 55 >>> A.get_info() ##可以看到实例的属性值已经修改-------------------The jobs info--------------------The jobs comes from UKA, is 55 old#可以通过del删除某个属性>>> del A.country>>> A.get_info() #报错,没有对应的country属性Traceback (most recent call last): File "", line 1, in File "E:\pycharm\class_method.py", line 14, in get_info print("The %s comes from %s, is %d old" % (self.name, self.country, self.__age)) AttributeError: 'People' object has no attribute 'country'-------------------The jobs info-------------------- >>> A.country = "China" #添加属性>>> A.get_info() #可以看到属性添加成功-------------------The jobs info--------------------The jobs comes from China, is 55 old
注意上面的通过实例对属性的增加,删除,修改操作仅对当前的实例有效;而对于类的其余实例则没有效果。可以做如下测试以证明:
>>> a = People(,,) >>> a.pos = >>> a.pos >>> B = People(,,) >>> File , line 1,
解释:
创建类的时候python会在内存中为类开辟一段内存空间,实例化的时候,python会为每一个实例开辟一段内存空间,每个实例的内存空间都是相互独立的,因此更改了a的内存空间,并不会影响B的内存空间。
若想使更改的效果,对类的每一个实例都生效,可以使用类变量。
在类变量之前,先说一下self参数。在类中定义的方法,每个方法都有一个self参数,那么self参数该如何理解?
类变量:
首先满足上面提到的,让更改对每一个实例都生效。
class People(object): addr = "Earth" # 类变量 def __init__(self, country, name, age=23): self.country = country self.name = name self.__age = age
然后对上面的类进行实例化操作,如下:
>>> a = People("USA","swift", 29) #实例化两个类>>> b = People("China","wxz", 24) >>> a.addr #这两个类都有一个addr属性,注意addr类变量在类中定义的方法'Earth'>>> b.addr'Earth'>>> a.addr = "Moon" #注意这样做只是在实例a中添加了实例属性addr,而不是修改类变量addr。>>> a.addr #实例a访问的是实例属性中的addr。'Moon' >>> b.addr #而实例b访问的是类变量addr。因此结果不同'Earth'>>> People.addr = "Moon" #修改类变量,这时候实例a仍然访问的是实例属性addr,而实例b访问的是类变量addr。>>> a.addr'Moon'>>> b.addr'Moon'#再实例化一个实例对象c,可以发现c的addr属性已经是修改之后的属性。>>> c = People("UKA", "King",88)>>> c.addr #实例对象c访问的是类变量addr。'Moon'
在上面的实例中,我们给实例a添加一个实例属性addr,而这时候类变量也有一个属性addr,那么在访问的时候实例会怎么去调用对应的值呢?
通过以上的例子可以得出如下结论:属性查找,首先查找实例本身是否有对应的属性,若找到则返回结果,停止查找;否则就继续查找类中的属性变量。
在这里实例a因为添加了add实例r属性,因此实例a只会返回实例本身的addr结果;而实例b和实例c,因为本身的没有addr实例属性(构造函数中没有定义),因此会返回类变量addr的值。
类变量是类的各个实例共有的属性。当然这个属性也可以放在构造函数中,在每个实例初始化的时候,就会自动生成这个属性。
但是上面提到过python会为每个实例开辟一个内存空间,因此当实例非常巨大的时候,这样做会占用存储空间。采用类变量的形式更节省空间。
封装:
在这个实例中有一个简单的方法就是get_info()。对于一个对象也就是实例来说,要想得到这个对象的具体信息,只需要调用get_info()这个方法即可,然后就会返回对象的具体信息。但是具体是怎么样得到这些信息的,这个实例是不知道的。这种形式就是封装。把一些功能实现的细节不对外暴露,隐藏起来就是封装。
继承:
class People(object): def __init__(self,name,pos=None): self.name = name self.pos = pos def get_info(self): print("My name is %s, I have not a work" % self.name)class Teacher(People): def __init__(self,name, pos, school): super(Teacher,self).__init__(name, pos) #重写构造方法的两种形式,推荐使用super的形式,构造方法重写时注意参数传递。 # People.__init__(self, name, pos) self.school = school def get_info(self): print("My name is %s, I am a %s" % (self.name, self.pos)) print("The colleage is %s" % self.school)class Student(People): def __init__(self,name,pos, score, course): super(Student, self).__init__(name, pos) self.score = score self.course = course def get_info(self): print("My name is %s, I am a %s" % (self.name, self.pos)) print("My score is %d" % self.score) print("I have learned the %s %s %s" % self.course)
上面定义了一个父类People,两个子类teacher和student,都继承了people。
实例化操作:
a = People("wxz") b = Teacher(name="steve", pos="teacher", school="Peking university") d = Student(name="job", pos="Stuent", score=88, course=("数学","语文","物理")) In [6]: a.get_info() My name is wxz, I have not a work In [7]: b.get_info() My name is steve, I am a teacher The colleage is Peking university In [8]: d.get_info() My name is job, I am a Stuent My score is 88I have learned the 数学 语文 物理
实例化的每一个对象都可以调用get_info()方法,得到其对应的信息。这三个对象是不一样的,分别为people, teacher,student对象。
若有一个函数,只要传入对应的对象,然后就可以调用函数得到对应的信息。如下这种形式:
In [9]: def print_info(obj): ##在只要传入对象信息,我们不知道这个对象是什么类型,但是他依然可以得到对象的信息 ...: obj.get_info() ...: In [10]: print_info(a) My name is wxz, I have not a work In [11]: print_info(b) My name is steve, I am a teacher The colleage is Peking university In [12]: print_info(d) My name is job, I am a Stuent My score is 88I have learned the 数学 语文 物理
在这个例子中,并不知道a,b,d是什么样的对象,要做的只是把这三个对象传入了print_intfo函数,然后函数会自动返回对应的对象信息。
这里只有一个print_info的接口,但是不同的对象都可以调用这个接口,这种行为就叫做多态。
多态就是一种接口的多种使用。
下面一个简单的多态实例
list1 Out[22]: ['a', 'f', 'd', 's', 'f', 'a', 's', 'd', 'f'] #列表tuple1 Out[23]: ('f', 'g', 'a', 'g', 'f', 'd', 'g', 'd', 'f') #元组len(list1) Out[24]: 9len(tuple1) Out[25]: 9
对于len()函数来说并不知道list1是列表,tuple1是元组,len()函数只是接受一个参数对象,然后返回这个参数对象的长度。也可以理解为多态的一种使用。
面向对象的三个基本特征:封装,继承,多态。
面向的对象的属性: