import pandas as pd import numpy as np import warnings warnings.filterwarnings('ignore')
#reduce_mem_usage 函数通过调整数据类型,减少数据在内存中占用的空间 def reduce_mem_usage(df): """ iterate through all the columns of a dataframe and modify the data type to reduce memory usage. """ start_mem = df.memory_usage().sum() print('Memory usage of dataframe is {:.2f} MB'.format(start_mem)) for col in df.columns: col_type = df[col].dtype if col_type != object: c_min = df[col].min() c_max = df[col].max() if str(col_type)[:3] == 'int': if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max: df[col] = df[col].astype(np.int8) elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max: df[col] = df[col].astype(np.int16) elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max: df[col] = df[col].astype(np.int32) elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max: df[col] = df[col].astype(np.int64) else: if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max: df[col] = df[col].astype(np.float16) elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max: df[col] = df[col].astype(np.float32) else: df[col] = df[col].astype(np.float64) else: df[col] = df[col].astype('category') end_mem = df.memory_usage().sum() print('Memory usage after optimization is: {:.2f} MB'.format(end_mem)) print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem)) return df
sample_feature = reduce_mem_usage(pd.read_csv('data_for_tree.csv'))
Memory usage of dataframe is 62099672.00 MB
Memory usage after optimization is: 16520303.00 MB
Decreased by 73.4%
continuous_feature_names = [x for x in sample_feature.columns if x not in ['price','brand','model','brand']]
sample_feature = sample_feature.dropna().replace('-', 0).reset_index(drop=True) sample_feature['notRepairedDamage'] = sample_feature['notRepairedDamage'].astype(np.float32) train = sample_feature[continuous_feature_names + ['price']] train_X = train[continuous_feature_names] train_y = train['price']
from sklearn.linear_model import LinearRegression
model = LinearRegression(normalize=True)
model = model.fit(train_X, train_y)
查看训练的线性回归模型的截距(intercept)与权重(coef)
'intercept:'+ str(model.intercept_) sorted(dict(zip(continuous_feature_names, model.coef_)).items(), key=lambda x:x[1], reverse=True)
[('v_6', 3342612.384537345), ('v_8', 684205.534533214), ('v_9', 178967.94192530424), ('v_7', 35223.07319016895), ('v_5', 21917.550249749802), ('v_3', 12782.03250792227), ('v_12', 11654.925634146672), ('v_13', 9884.194615297649), ('v_11', 5519.182176035517), ('v_10', 3765.6101415594258), ('gearbox', 900.3205339198406), ('fuelType', 353.5206495542567), ('bodyType', 186.51797317460046), ('city', 45.17354204168846), ('power', 31.163045441455335), ('brand_price_median', 0.535967111869784), ('brand_price_std', 0.4346788365040235), ('brand_amount', 0.15308295553300566), ('brand_price_max', 0.003891831020467389), ('seller', -1.2684613466262817e-06), ('offerType', -4.759058356285095e-06), ('brand_price_sum', -2.2430642281682917e-05), ('name', -0.00042591632723759166), ('used_time', -0.012574429533889028), ('brand_price_average', -0.414105722833381), ('brand_price_min', -2.3163823428971835), ('train', -5.392535065078232), ('power_bin', -59.24591853031839), ('v_14', -233.1604256172217), ('kilometer', -372.96600915402496), ('notRepairedDamage', -449.29703564695365), ('v_0', -1490.6790578168238), ('v_4', -14219.648899108111), ('v_2', -16528.55239086934), ('v_1', -42869.43976200439)]
from matplotlib import pyplot as plt
subsample_index = np.random.randint(low=0, high=len(train_y), size=50)
绘制特征v_9的值与标签的散点图,图片发现模型的预测结果(蓝色点)与真实标签(黑色点)的分布差异较大,且部分预测值出现了小于0的情况,说明模型存在一些问题
plt.scatter(train_X['v_9'][subsample_index], train_y[subsample_index], color='black') plt.scatter(train_X['v_9'][subsample_index], model.predict(train_X.loc[subsample_index]), color='blue') plt.xlabel('v_9') plt.ylabel('price') plt.legend(['True Price','Predicted Price'],loc='upper right') print('The predicted price is obvious different from true price') plt.show()
The predicted price is obvious different from true price
通过作图发现数据的标签(price)呈现长尾分布,不利于建模预测。原因是很多模型都假设数据误差项符合正态分布,而长尾分布的数据违背了这一假设。
import seaborn as sns print('It is clear to see the price shows a typical exponential distribution') plt.figure(figsize=(15,5)) plt.subplot(1,2,1) sns.distplot(train_y) plt.subplot(1,2,2) sns.distplot(train_y[train_y < np.quantile(train_y, 0.9)])
It is clear to see the price shows a typical exponential distribution <matplotlib.axes._subplots.AxesSubplot at 0x1b33efb2f98>
对标签进行 l o g ( x + 1 ) log(x+1) log(x+1) 变换,使标签贴近于正态分布
train_y_ln = np.log(train_y + 1)
import seaborn as sns print('The transformed price seems like normal distribution') plt.figure(figsize=(15,5)) plt.subplot(1,2,1) sns.distplot(train_y_ln) plt.subplot(1,2,2) sns.distplot(train_y_ln[train_y_ln < np.quantile(train_y_ln, 0.9)])
The transformed price seems like normal distribution <matplotlib.axes._subplots.AxesSubplot at 0x1b33f077160>
model = model.fit(train_X, train_y_ln) print('intercept:'+ str(model.intercept_)) sorted(dict(zip(continuous_feature_names, model.coef_)).items(), key=lambda x:x[1], reverse=True)
intercept:23.515920686637713 [('v_9', 6.043993029165403), ('v_12', 2.0357439855551394), ('v_11', 1.3607608712255672), ('v_1', 1.3079816298861897), ('v_13', 1.0788833838535354), ('v_3', 0.9895814429387444), ('gearbox', 0.009170812023421397), ('fuelType', 0.006447089787635784), ('bodyType', 0.004815242907679581), ('power_bin', 0.003151801949447194), ('power', 0.0012550361843629999), ('train', 0.0001429273782925814), ('brand_price_min', 2.0721302299502698e-05), ('brand_price_average', 5.308179717783439e-06), ('brand_amount', 2.8308531339942507e-06), ('brand_price_max', 6.764442596115763e-07), ('offerType', 1.6765966392995324e-10), ('seller', 9.308109838457312e-12), ('brand_price_sum', -1.3473184925468486e-10), ('name', -7.11403461065247e-08), ('brand_price_median', -1.7608143661053008e-06), ('brand_price_std', -2.7899058266986454e-06), ('used_time', -5.6142735899344175e-06), ('city', -0.0024992974087053223), ('v_14', -0.012754139659375262), ('kilometer', -0.013999175312751872), ('v_0', -0.04553774829634237), ('notRepairedDamage', -0.273686961116076), ('v_7', -0.7455902679730504), ('v_4', -0.9281349233755761), ('v_2', -1.2781892166433606), ('v_5', -1.5458846136756323), ('v_10', -1.8059217242413748), ('v_8', -42.611729973490604), ('v_6', -241.30992120503035)]
再次进行可视化,发现预测结果与真实值较为接近,且未出现异常状况
plt.scatter(train_X['v_9'][subsample_index], train_y[subsample_index], color='black') plt.scatter(train_X['v_9'][subsample_index], np.exp(model.predict(train_X.loc[subsample_index])), color='blue') plt.xlabel('v_9') plt.ylabel('price') plt.legend(['True Price','Predicted Price'],loc='upper right') print('The predicted price seems normal after np.log transforming') plt.show()
The predicted price seems normal after np.log transforming
from sklearn.model_selection import cross_val_score from sklearn.metrics import mean_absolute_error, make_scorer
def log_transfer(func): def wrapper(y, yhat): result = func(np.log(y), np.nan_to_num(np.log(yhat))) return result return wrapper
scores = cross_val_score(model, X=train_X, y=train_y, verbose=1, cv = 5, scoring=make_scorer(log_transfer(mean_absolute_error)))
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers. [Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 1.1s finished
使用线性回归模型,对未处理标签的特征数据进行五折交叉验证(Error 1.36)
print('AVG:', np.mean(scores))
AVG: 1.3658024042408414
使用线性回归模型,对处理过标签的特征数据进行五折交叉验证(Error 0.19)
scores = cross_val_score(model, X=train_X, y=train_y_ln, verbose=1, cv = 5, scoring=make_scorer(mean_absolute_error))
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers. [Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 1.1s finished
print('AVG:', np.mean(scores))
AVG: 0.19325301535176911
scores = pd.DataFrame(scores.reshape(1,-1)) scores.columns = ['cv' + str(x) for x in range(1, 6)] scores.index = ['MAE'] scores
cv1 | cv2 | cv3 | cv4 | cv5 | |
---|---|---|---|---|---|
MAE | 0.191642 | 0.194986 | 0.192737 | 0.195329 | 0.19445 |
# 采用时间顺序对数据集进行分隔。 # 选用靠前时间的4/5样本当作训练集,靠后时间的1/5当作验证集, # 最终结果与五折交叉验证差距不 import datetime
sample_feature = sample_feature.reset_index(drop=True)
split_point = len(sample_feature) // 5 * 4
train = sample_feature.loc[:split_point].dropna() val = sample_feature.loc[split_point:].dropna() train_X = train[continuous_feature_names] train_y_ln = np.log(train['price'] + 1) val_X = val[continuous_feature_names] val_y_ln = np.log(val['price'] + 1)
model = model.fit(train_X, train_y_ln)
mean_absolute_error(val_y_ln, model.predict(val_X))
0.1957766704050743
from sklearn.model_selection import learning_curve, validation_curve
? learning_curve
def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,n_jobs=1, train_size=np.linspace(.1, 1.0, 5 )): plt.figure() plt.title(title) if ylim is not None: plt.ylim(*ylim) plt.xlabel('Training example') plt.ylabel('score') train_sizes, train_scores, test_scores = learning_curve(estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_size, scoring = make_scorer(mean_absolute_error)) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.grid()#区域 plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color="r") plt.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color="g") plt.plot(train_sizes, train_scores_mean, 'o-', color='r', label="Training score") plt.plot(train_sizes, test_scores_mean,'o-',color="g", label="Cross-validation score") plt.legend(loc="best") return plt
plot_learning_curve(LinearRegression(), 'Liner_model', train_X[:1000], train_y_ln[:1000], ylim=(0.0, 0.5), cv=5, n_jobs=1)
<module 'matplotlib.pyplot' from 'C:\\ProgramData\\Anaconda3\\lib\\site-packages\\matplotlib\\pyplot.py'>
train = sample_feature[continuous_feature_names + ['price']].dropna() train_X = train[continuous_feature_names] train_y = train['price'] train_y_ln = np.log(train_y + 1)
from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.linear_model import Lasso
models = [LinearRegression(), Ridge(), Lasso()]
result = dict() for model in models: model_name = str(model).split('(')[0] scores = cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error)) result[model_name] = scores print(model_name + ' is finished')
LinearRegression is finished Ridge is finished Lasso is finished
对三种方法的效果对比
result = pd.DataFrame(result) result.index = ['cv' + str(x) for x in range(1, 6)] result
LinearRegression | Ridge | Lasso | |
---|---|---|---|
cv1 | 0.191642 | 0.195665 | 0.382708 |
cv2 | 0.194986 | 0.198841 | 0.383916 |
cv3 | 0.192737 | 0.196629 | 0.380754 |
cv4 | 0.195329 | 0.199255 | 0.385683 |
cv5 | 0.194450 | 0.198173 | 0.383555 |
model = LinearRegression().fit(train_X, train_y_ln) print('intercept:'+ str(model.intercept_)) sns.barplot(abs(model.coef_), continuous_feature_names)
intercept:23.515984499017883 <matplotlib.axes._subplots.AxesSubplot at 0x1feb933ca58>
L2正则化在拟合过程中通常都倾向于让权值尽可能小,最后构造一个所有参数都比较小的模型。因为一般认为参数值小的模型比较简单,能适应不同的数据集,也在一定程度上避免了过拟合现象。可以设想一下对于一个线性回归方程,若参数很大,那么只要数据偏移一点点,就会对结果造成很大的影响;但如果参数足够小,数据偏移得多一点也不会对结果造成什么影响,专业一点的说法是『抗扰动能力强』
model = Ridge().fit(train_X, train_y_ln) print('intercept:'+ str(model.intercept_)) sns.barplot(abs(model.coef_), continuous_feature_names)
intercept:5.901527844424091 <matplotlib.axes._subplots.AxesSubplot at 0x1fea9056860>
L1正则化有助于生成一个稀疏权值矩阵,进而可以用于特征选择。如下图,我们发现power与userd_time特征非常重要。
model = Lasso().fit(train_X, train_y_ln) print('intercept:'+ str(model.intercept_)) sns.barplot(abs(model.coef_), continuous_feature_names)
intercept:8.674427764003347 <matplotlib.axes._subplots.AxesSubplot at 0x1fea90b69b0>
除此之外,决策树通过信息熵或GINI指数选择分裂节点时,优先选择的分裂特征也更加重要,这同样是一种特征选择的方法。XGBoost与LightGBM模型中的model_importance指标正是基于此计算的
除了线性模型以外,还有许多我们常用的非线性模型如下,在此篇幅有限不再一一讲解原理。我们选择了部分常用模型与线性模型进行效果比对。
from sklearn.linear_model import LinearRegression from sklearn.svm import SVC from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import GradientBoostingRegressor from sklearn.neural_network import MLPRegressor from xgboost.sklearn import XGBRegressor from lightgbm.sklearn import LGBMRegressor
models = [LinearRegression(), DecisionTreeRegressor(), RandomForestRegressor(), GradientBoostingRegressor(), MLPRegressor(solver='lbfgs', max_iter=100), XGBRegressor(n_estimators = 100, objective='reg:squarederror'), LGBMRegressor(n_estimators = 100)]
result = dict() for model in models: model_name = str(model).split('(')[0] scores = cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error)) result[model_name] = scores print(model_name + ' is finished')
LinearRegression is finished DecisionTreeRegressor is finished RandomForestRegressor is finished GradientBoostingRegressor is finished MLPRegressor is finished XGBRegressor is finished LGBMRegressor is finished
result = pd.DataFrame(result) result.index = ['cv' + str(x) for x in range(1, 6)] result
LinearRegression | DecisionTreeRegressor | RandomForestRegressor | GradientBoostingRegressor | MLPRegressor | XGBRegressor | LGBMRegressor | |
---|---|---|---|---|---|---|---|
cv1 | 0.191642 | 0.184566 | 0.136266 | 0.168626 | 124.299426 | 0.168698 | 0.141159 |
cv2 | 0.194986 | 0.187029 | 0.139693 | 0.171905 | 257.886236 | 0.172258 | 0.143363 |
cv3 | 0.192737 | 0.184839 | 0.136871 | 0.169553 | 236.829589 | 0.168604 | 0.142137 |
cv4 | 0.195329 | 0.182605 | 0.138689 | 0.172299 | 130.197264 | 0.172474 | 0.143461 |
cv5 | 0.194450 | 0.186626 | 0.137420 | 0.171206 | 268.090236 | 0.170898 | 0.141921 |
可以看到随机森林模型在每一个fold中均取得了更好的效果
在此我们介绍了三种常用的调参方法如下:
## LGB的参数集合: objective = ['regression', 'regression_l1', 'mape', 'huber', 'fair'] num_leaves = [3,5,10,15,20,40, 55] max_depth = [3,5,10,15,20,40, 55] bagging_fraction = [] feature_fraction = [] drop_rate = []
best_obj = dict() for obj in objective: model = LGBMRegressor(objective=obj) score = np.mean(cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error))) best_obj[obj] = score best_leaves = dict() for leaves in num_leaves: model = LGBMRegressor(objective=min(best_obj.items(), key=lambda x:x[1])[0], num_leaves=leaves) score = np.mean(cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error))) best_leaves[leaves] = score best_depth = dict() for depth in max_depth: model = LGBMRegressor(objective=min(best_obj.items(), key=lambda x:x[1])[0], num_leaves=min(best_leaves.items(), key=lambda x:x[1])[0], max_depth=depth) score = np.mean(cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error))) best_depth[depth] = score
sns.lineplot(x=['0_initial','1_turning_obj','2_turning_leaves','3_turning_depth'], y=[0.143 ,min(best_obj.values()), min(best_leaves.values()), min(best_depth.values())])
<matplotlib.axes._subplots.AxesSubplot at 0x1fea93f6080>
from sklearn.model_selection import GridSearchCV
parameters = {'objective': objective , 'num_leaves': num_leaves, 'max_depth': max_depth} model = LGBMRegressor() clf = GridSearchCV(model, parameters, cv=5) clf = clf.fit(train_X, train_y)
clf.best_params_
{'max_depth': 15, 'num_leaves': 55, 'objective': 'regression'}
model = LGBMRegressor(objective='regression', num_leaves=55, max_depth=15)
np.mean(cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error)))
0.13626164479243302
from bayes_opt import BayesianOptimization
def rf_cv(num_leaves, max_depth, subsample, min_child_samples): val = cross_val_score( LGBMRegressor(objective = 'regression_l1', num_leaves=int(num_leaves), max_depth=int(max_depth), subsample = subsample, min_child_samples = int(min_child_samples) ), X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error) ).mean() return 1 - val
rf_bo = BayesianOptimization( rf_cv, { 'num_leaves': (2, 100), 'max_depth': (2, 100), 'subsample': (0.1, 1), 'min_child_samples' : (2, 100) } )
rf_bo.maximize()
| iter | target | max_depth | min_ch... | num_le... | subsample | ------------------------------------------------------------------------- | [0m 1 [0m | [0m 0.8649 [0m | [0m 89.57 [0m | [0m 47.3 [0m | [0m 55.13 [0m | [0m 0.1792 [0m | | [0m 2 [0m | [0m 0.8477 [0m | [0m 99.86 [0m | [0m 60.91 [0m | [0m 15.35 [0m | [0m 0.4716 [0m | | [95m 3 [0m | [95m 0.8698 [0m | [95m 81.74 [0m | [95m 83.32 [0m | [95m 92.59 [0m | [95m 0.9559 [0m | | [0m 4 [0m | [0m 0.8627 [0m | [0m 90.2 [0m | [0m 8.754 [0m | [0m 43.34 [0m | [0m 0.7772 [0m | | [0m 5 [0m | [0m 0.8115 [0m | [0m 10.07 [0m | [0m 86.15 [0m | [0m 4.109 [0m | [0m 0.3416 [0m | | [95m 6 [0m | [95m 0.8701 [0m | [95m 99.15 [0m | [95m 9.158 [0m | [95m 99.47 [0m | [95m 0.494 [0m | | [0m 7 [0m | [0m 0.806 [0m | [0m 2.166 [0m | [0m 2.416 [0m | [0m 97.7 [0m | [0m 0.224 [0m | | [0m 8 [0m | [0m 0.8701 [0m | [0m 98.57 [0m | [0m 97.67 [0m | [0m 99.87 [0m | [0m 0.3703 [0m | | [95m 9 [0m | [95m 0.8703 [0m | [95m 99.87 [0m | [95m 43.03 [0m | [95m 99.72 [0m | [95m 0.9749 [0m | | [0m 10 [0m | [0m 0.869 [0m | [0m 10.31 [0m | [0m 99.63 [0m | [0m 99.34 [0m | [0m 0.2517 [0m | | [95m 11 [0m | [95m 0.8703 [0m | [95m 52.27 [0m | [95m 99.56 [0m | [95m 98.97 [0m | [95m 0.9641 [0m | | [0m 12 [0m | [0m 0.8669 [0m | [0m 99.89 [0m | [0m 8.846 [0m | [0m 66.49 [0m | [0m 0.1437 [0m | | [0m 13 [0m | [0m 0.8702 [0m | [0m 68.13 [0m | [0m 75.28 [0m | [0m 98.71 [0m | [0m 0.153 [0m | | [0m 14 [0m | [0m 0.8695 [0m | [0m 84.13 [0m | [0m 86.48 [0m | [0m 91.9 [0m | [0m 0.7949 [0m | | [0m 15 [0m | [0m 0.8702 [0m | [0m 98.09 [0m | [0m 59.2 [0m | [0m 99.65 [0m | [0m 0.3275 [0m | | [0m 16 [0m | [0m 0.87 [0m | [0m 68.97 [0m | [0m 98.62 [0m | [0m 98.93 [0m | [0m 0.2221 [0m | | [0m 17 [0m | [0m 0.8702 [0m | [0m 99.85 [0m | [0m 63.74 [0m | [0m 99.63 [0m | [0m 0.4137 [0m | | [0m 18 [0m | [0m 0.8703 [0m | [0m 45.87 [0m | [0m 99.05 [0m | [0m 99.89 [0m | [0m 0.3238 [0m | | [0m 19 [0m | [0m 0.8702 [0m | [0m 79.65 [0m | [0m 46.91 [0m | [0m 98.61 [0m | [0m 0.8999 [0m | | [0m 20 [0m | [0m 0.8702 [0m | [0m 99.25 [0m | [0m 36.73 [0m | [0m 99.05 [0m | [0m 0.1262 [0m | | [0m 21 [0m | [0m 0.8702 [0m | [0m 85.51 [0m | [0m 85.34 [0m | [0m 99.77 [0m | [0m 0.8917 [0m | | [0m 22 [0m | [0m 0.8696 [0m | [0m 99.99 [0m | [0m 38.51 [0m | [0m 89.13 [0m | [0m 0.9884 [0m | | [0m 23 [0m | [0m 0.8701 [0m | [0m 63.29 [0m | [0m 97.93 [0m | [0m 99.94 [0m | [0m 0.9585 [0m | | [0m 24 [0m | [0m 0.8702 [0m | [0m 93.04 [0m | [0m 71.42 [0m | [0m 99.94 [0m | [0m 0.9646 [0m | | [0m 25 [0m | [0m 0.8701 [0m | [0m 99.73 [0m | [0m 16.21 [0m | [0m 99.38 [0m | [0m 0.9778 [0m | | [0m 26 [0m | [0m 0.87 [0m | [0m 86.28 [0m | [0m 58.1 [0m | [0m 99.47 [0m | [0m 0.107 [0m | | [0m 27 [0m | [0m 0.8703 [0m | [0m 47.28 [0m | [0m 99.83 [0m | [0m 99.65 [0m | [0m 0.4674 [0m | | [0m 28 [0m | [0m 0.8703 [0m | [0m 68.29 [0m | [0m 99.51 [0m | [0m 99.4 [0m | [0m 0.2757 [0m | | [0m 29 [0m | [0m 0.8701 [0m | [0m 76.49 [0m | [0m 73.41 [0m | [0m 99.86 [0m | [0m 0.9394 [0m | | [0m 30 [0m | [0m 0.8695 [0m | [0m 37.27 [0m | [0m 99.87 [0m | [0m 89.87 [0m | [0m 0.7588 [0m | =========================================================================
1 - rf_bo.max['target']
0.1296693644053145