目录
Installation
Curves
Image Visualization
pip install tensorboard
Listen logdir
build summary instance
fed data into summary instance
import datetime import tensorflow as tf current_time = datetime.datetime.now().strftime('%Y%m%d-%H%M%s') log_dir = 'logs/' + current_time summary_writer = tf.summary.create_file_writer(log_dir)
with summary_writer.as_default(): tf.summary.scalar('loss', float(loss), step=epoch) tf.summary.scalar('accuracy', float(train_accuracy), step=epoch)
sample_img = next(iter(db))[0] sample_img = sample_img[0] sample_img = tf.reshape(sample_img, [1, 28, 28, 1]) with summary_writer.as_default(): tf.summary.image('Traning sample:', sample_img, step=0)
val_images = x[:25] val_images = tf.reshape(val_images, [-1, 28, 28, 1]) with summary_writer.as_default(): tf.summary.scalar('test-acc', float(loss), step=step) tf.summary.image('val-onebyone-images:', val_images, max_output=25, step=step)
import tensorflow as tf from tensorflow.keras import datasets, layers, optimizers, Sequential, metrics import datetime from matplotlib import pyplot as plt import io def preprocess(x, y): x = tf.cast(x, dtype=tf.float32) / 255. y = tf.cast(y, dtype=tf.int32) return x, y def plot_to_image(figure): """Converts the matplotlib plot specified by 'figure' to a PNG image and returns it. The supplied figure is closed and inaccessible after this call.""" # Save the plot to a PNG in memory. buf = io.BytesIO() plt.savefig(buf, format='png') # Closing the figure prevents it from being displayed directly inside # the notebook. plt.close(figure) buf.seek(0) # Convert PNG buffer to TF image image = tf.image.decode_png(buf.getvalue(), channels=4) # Add the batch dimension image = tf.expand_dims(image, 0) return image def image_grid(images): """Return a 5x5 grid of the MNIST images as a matplotlib figure.""" # Create a figure to contain the plot. figure = plt.figure(figsize=(10, 10)) for i in range(25): # Start next subplot. plt.subplot(5, 5, i + 1, title='name') plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(images[i], cmap=plt.cm.binary) return figure batchsz = 128 (x, y), (x_val, y_val) = datasets.mnist.load_data() print('datasets:', x.shape, y.shape, x.min(), x.max()) db = tf.data.Dataset.from_tensor_slices((x, y)) db = db.map(preprocess).shuffle(60000).batch(batchsz).repeat(10) ds_val = tf.data.Dataset.from_tensor_slices((x_val, y_val)) ds_val = ds_val.map(preprocess).batch(batchsz, drop_remainder=True) network = Sequential([ layers.Dense(256, activation='relu'), layers.Dense(128, activation='relu'), layers.Dense(64, activation='relu'), layers.Dense(32, activation='relu'), layers.Dense(10) ]) network.build(input_shape=(None, 28 * 28)) network.summary() optimizer = optimizers.Adam(lr=0.01) current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") log_dir = 'logs/' + current_time summary_writer = tf.summary.create_file_writer(log_dir) # get x from (x,y) sample_img = next(iter(db))[0] # get first image instance sample_img = sample_img[0] sample_img = tf.reshape(sample_img, [1, 28, 28, 1]) with summary_writer.as_default(): tf.summary.image("Training sample:", sample_img, step=0) for step, (x, y) in enumerate(db): with tf.GradientTape() as tape: # [b, 28, 28] => [b, 784] x = tf.reshape(x, (-1, 28 * 28)) # [b, 784] => [b, 10] out = network(x) # [b] => [b, 10] y_onehot = tf.one_hot(y, depth=10) # [b] loss = tf.reduce_mean( tf.losses.categorical_crossentropy(y_onehot, out, from_logits=True)) grads = tape.gradient(loss, network.trainable_variables) optimizer.apply_gradients(zip(grads, network.trainable_variables)) if step % 100 == 0: print(step, 'loss:', float(loss)) with summary_writer.as_default(): tf.summary.scalar('train-loss', float(loss), step=step) # evaluate if step % 500 == 0: total, total_correct = 0., 0 for _, (x, y) in enumerate(ds_val): # [b, 28, 28] => [b, 784] x = tf.reshape(x, (-1, 28 * 28)) # [b, 784] => [b, 10] out = network(x) # [b, 10] => [b] pred = tf.argmax(out, axis=1) pred = tf.cast(pred, dtype=tf.int32) # bool type correct = tf.equal(pred, y) # bool tensor => int tensor => numpy total_correct += tf.reduce_sum(tf.cast(correct, dtype=tf.int32)).numpy() total += x.shape[0] print(step, 'Evaluate Acc:', total_correct / total) # print(x.shape) val_images = x[:25] val_images = tf.reshape(val_images, [-1, 28, 28, 1]) with summary_writer.as_default(): tf.summary.scalar('test-acc', float(total_correct / total), step=step) tf.summary.image("val-onebyone-images:", val_images, max_outputs=25, step=step) val_images = tf.reshape(val_images, [-1, 28, 28]) figure = image_grid(val_images) tf.summary.image('val-images:', plot_to_image(figure), step=step)
datasets: (60000, 28, 28) (60000,) 0 255 Model: "sequential_1" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense_5 (Dense) multiple 200960 _________________________________________________________________ dense_6 (Dense) multiple 32896 _________________________________________________________________ dense_7 (Dense) multiple 8256 _________________________________________________________________ dense_8 (Dense) multiple 2080 _________________________________________________________________ dense_9 (Dense) multiple 330 ================================================================= Total params: 244,522 Trainable params: 244,522 Non-trainable params: 0 _________________________________________________________________ 0 loss: 2.3376832008361816 0 Evaluate Acc: 0.18008814102564102 100 loss: 0.48326703906059265 200 loss: 0.25227126479148865 300 loss: 0.1876775473356247 400 loss: 0.1666598916053772 500 loss: 0.1336817890405655 500 Evaluate Acc: 0.9542267628205128 600 loss: 0.12189087271690369 700 loss: 0.1326061487197876 800 loss: 0.19785025715827942 900 loss: 0.06632998585700989 1000 loss: 0.059026435017585754 1000 Evaluate Acc: 0.96875 1100 loss: 0.1200297400355339 1200 loss: 0.20464201271533966 1300 loss: 0.07950295507907867 1400 loss: 0.13028256595134735 1500 loss: 0.0644262284040451 1500 Evaluate Acc: 0.9657451923076923 1600 loss: 0.06169471889734268 1700 loss: 0.04833034425973892 1800 loss: 0.14102090895175934 1900 loss: 0.00526371318846941 2000 loss: 0.03505736589431763 2000 Evaluate Acc: 0.9735576923076923 2100 loss: 0.08948884159326553 2200 loss: 0.035213079303503036 2300 loss: 0.15530908107757568 2400 loss: 0.13484254479408264 2500 loss: 0.17365671694278717 2500 Evaluate Acc: 0.9727564102564102 2600 loss: 0.17384998500347137 2700 loss: 0.06045734882354736 2800 loss: 0.13712377846240997 2900 loss: 0.08388100564479828 3000 loss: 0.05825091525912285 3000 Evaluate Acc: 0.9657451923076923 3100 loss: 0.08653448522090912 3200 loss: 0.06315462291240692 3300 loss: 0.05536603182554245 3400 loss: 0.2064306139945984 3500 loss: 0.043574199080467224 3500 Evaluate Acc: 0.96875 3600 loss: 0.0456567145884037 3700 loss: 0.08570165187120438 3800 loss: 0.021522987633943558 3900 loss: 0.05123775079846382 4000 loss: 0.14489373564720154 4000 Evaluate Acc: 0.9722556089743589 4100 loss: 0.08733823150396347 4200 loss: 0.04572174698114395 4300 loss: 0.06757005304098129 4400 loss: 0.018376709893345833 4500 loss: 0.024091437458992004 4500 Evaluate Acc: 0.9701522435897436 4600 loss: 0.10814780741930008