一个索引就是一个拥有几分相似特征的文档的集合。比如说,你可以有一个客户数据的索引,另一个产品目录的索引,还有一个订单数据的索引。一个索引由一个名字来标识(必 须全部是小写字母),并且当我们要对这个索引中的文档进行索引、搜索、更新和删除的时 候,都要使用到这个名字。在一个集群中,可以定义任意多的索引。
能搜索的数据必须索引,这样的好处是可以提高查询速度,比如:新华字典前面的目录 就是索引的意思,目录可以提高查询速度。
Elasticsearch 索引的精髓:一切设计都是为了提高搜索的性能。
在一个索引中,你可以定义一种或多种类型。
一个类型是你的索引的一个逻辑上的分类/分区,其语义完全由你来定。通常,会为具 有一组共同字段的文档定义一个类型。不同的版本,类型发生了不同的变化
版本 | Type |
---|---|
5.x | 支持多种 type |
6.x | 只能有一种 type |
7.x | 默认不再支持自定义索引类型(默认类型为:_doc) |
一个文档是一个可被索引的基础信息单元,也就是一条数据
比如:你可以拥有某一个客户的文档,某一个产品的一个文档,当然,也可以拥有某个订单的一个文档。文档以 JSON(Javascript Object Notation)格式来表示,而 JSON 是一个 到处存在的互联网数据交互格式。
在一个 index/type 里面,你可以存储任意多的文档。
相当于是数据表的字段,对文档数据根据不同属性进行的分类标识。
mapping 是处理数据的方式和规则方面做一些限制,如:某个字段的数据类型、默认值、分析器、是否被索引等等。这些都是映射里面可以设置的,其它就是处理 ES 里面数据的一 些使用规则设置也叫做映射,按着最优规则处理数据对性能提高很大,因此才需要建立映射, 并且需要思考如何建立映射才能对性能更好。
一个索引可以存储超出单个节点硬件限制的大量数据。比如,一个具有 10 亿文档数据的索引占据 1TB 的磁盘空间,而任一节点都可能没有这样大的磁盘空间。或者单个节点处 理搜索请求,响应太慢。为了解决这个问题,Elasticsearch 提供了将索引划分成多份的能力, 每一份就称之为分片。当你创建一个索引的时候,你可以指定你想要的分片的数量。每个分 片本身也是一个功能完善并且独立的“索引”,这个“索引”可以被放置到集群中的任何节点上。
分片很重要,主要有两方面的原因:
在一个网络 / 云的环境里,失败随时都可能发生,在某个分片/节点不知怎么的就处于离线状态,或者由于任何原因消失了,这种情况下,有一个故障转移机制是非常有用并且是 强烈推荐的。为此目的,Elasticsearch 允许你创建分片的一份或多份拷贝,这些拷贝叫做复 制分片(副本)。
复制分片之所以重要,有两个主要原因:
将分片分配给某个节点的过程,包括分配主分片或者副本。如果是副本,还包含从主分片复制数据的过程。这个过程是由 master 节点完成的。
一个运行中的 Elasticsearch 实例称为一个节点,而集群是由一个或者多个拥有相同 cluster.name 配置的节点组成, 它们共同承担数据和负载的压力。当有节点加入集群中或者 从集群中移除节点时,集群将会重新平均分布所有的数据。
当一个节点被选举成为主节点时, 它将负责管理集群范围内的所有变更,例如增加、 删除索引,或者增加、删除节点等。 而主节点并不需要涉及到文档级别的变更和搜索等操作,所以当集群只拥有一个主节点的情况下,即使流量的增加它也不会成为瓶颈。 任何节 点都可以成为主节点。我们的示例集群就只有一个节点,所以它同时也成为了主节点。
作为用户,我们可以将请求发送到集群中的任何节点 ,包括主节点。 每个节点都知道 任意文档所处的位置,并且能够将我们的请求直接转发到存储我们所需文档的节点。 无论 我们将请求发送到哪个节点,它都能负责从各个包含我们所需文档的节点收集回数据,并将最终结果返回給客户端。 Elasticsearch 对这一切的管理都是透明的。
当索引一个文档的时候,文档会被存储到一个主分片中。 Elasticsearch 如何知道一个文档应该存放到哪个分片中呢?当我们创建文档时,它如何决定这个文档应当被存储在分片 1 还是分片 2 中呢?首先这肯定不会是随机的,否则将来要获取文档的时候我们就不知道从何处寻找了。实际上,这个过程是根据下面这个公式决定的:
# routing 是一个可变值,默认是文档的 _id ,也可以设置成一个自定义的值。 routing 通过hash 函数生成一个数字,然后这个数字再除以 number_of_primary_shards (主分片的数量)后得到余数 。这个分布在 0 到 number_of_primary_shards-1 之间的余数,就是我们所寻求的文档所在分片的位置。 shard = hash(routing) % number_of_primary_shards
这就解释了为什么我们要在创建索引的时候就确定好主分片的数量 并且永远不会改变 这个数量:因为如果数量变化了,那么所有之前路由的值都会无效,文档也再也找不到了。
所有的文档 API( get 、 index 、 delete 、 bulk 、 update 以及 mget )都接受一个叫做 routing 的路由参数 ,通过这个参数我们可以自定义文档到分片的映射。一个自定 义的路由参数可以用来确保所有相关的文档——例如所有属于同一个用户的文档——都被存储到同一个分片中。
分片是 Elasticsearch 最小的工作单元。但是究竟什么是一个分片,它是如何工作的?
传统的数据库每个字段存储单个值,但这对全文检索并不够。文本字段中的每个单词需要被搜索,对数据库意味着需要单个字段有索引多值的能力。最好的支持是一个字段多个值需求的数据结构是倒排索引。
Elasticsearch 使用一种称为倒排索引的结构,它适用于快速的全文搜索。
见其名,知其意,有倒排索引,肯定会对应有正向索引。正向索引(forward index),反向索引(inverted index)更熟悉的名字是倒排索引。
所谓的正向索引,就是搜索引擎会将待搜索的文件都对应一个文件 ID,搜索时将这个ID 和搜索关键字进行对应,形成 K-V 对,然后对关键字进行统计计数
但是互联网上收录在搜索引擎中的文档的数目是个天文数字,这样的索引结构根本无法满足 实时返回排名结果的要求。所以,搜索引擎会将正向索引重新构建为倒排索引,即把文件 ID 对应到关键词的映射转换为关键词到文件 ID 的映射,每个关键词都对应着一系列的文件, 这些文件中都出现这个关键词。
一个倒排索引由文档中所有不重复词的列表构成,对于其中每个词,有一个包含它的文 档列表。例如,假设我们有两个文档,每个文档的 content 域包含如下内容:
早期的全文检索会为整个文档集合建立一个很大的倒排索引并将其写入到磁盘。 一旦新的索引就绪,旧的就会被其替换,这样最近的变化便可以被检索到。 倒排索引被写入磁盘后是 不可改变 的:它永远不会修改。
不变性有重要的价值:
分析 包含下面的过程:
Elasticsearch 还附带了可以直接使用的预包装的分析器。接下来我们会列出最重要的分析器。为了证明它们的差异,我们看看每个分析器会从下面的字符串得到哪些词条:"Set the shape to semi-transparent by calling set_trans(5)"
当我们 索引 一个文档,它的全文域被分析成词条以用来创建倒排索引。 但是,当我们在全文域 搜索 的时候,我们需要将查询字符串通过 相同的分析过程 ,以保证我们搜索 的词条格式与索引中的词条格式一致。
全文查询,理解每个域是如何定义的,因此它们可以做正确的事:
当Elasticsearch在你的文档中检测到一个新的字符串域,它会自动设置其为一个全文 字符串 域,使用 标准 分析器对它进行分析。你不希望总是这样。可能你想使用一个不同的 分析器,适用于你的数据使用的语言。有时候你想要一个字符串域就是一个字符串域—不使用分析,直接索引你传入的精确值,例如用户 ID 或者一个内部的状态域或标签。要做到这 一点,我们必须手动指定这些域的映射。
ES 的默认分词器无法识别中文中测试、单词这样的词汇,而是简单的将每个字拆完分为一 个词,这样的结果显然不符合我们的使用要求,所以我们需要下载 ES 对应版本的中文分词器。
我们这里采用 IK 中文分词器,下载地址为: https://github.com/medcl/elasticsearch-analysis-ik/releases/tag/v7.8.0 将解压后的后的文件夹放入 ES 根目录下的 plugins 目录下,重启 ES 即可使用。
# 测试:GET http://localhost:9200/_analyze { "text":"测试单词", # ik_max_word:会将文本做最细粒度的拆分 ik_smart:会将文本做最粗粒度的拆分 "analyzer":"ik_max_word" }
虽然 Elasticsearch 带有一些现成的分析器,然而在分析器上 Elasticsearch 真正的强大之处在于,你可以通过在一个适合你的特定数据的设置之中组合字符过滤器、分词器、词汇单 元过滤器来创建自定义的分析器。在 分析与分析器 我们说过,一个 分析器 就是在一个包 里面组合了三种函数的一个包装器, 三种函数按照顺序被执行:
字符过滤器
字符过滤器 用来 整理 一个尚未被分词的字符串。例如,如果我们的文本是 HTML 格 式的,它会包含像
或者
这样的 HTML 标签,这些标签是我们不想索引的。我 们可以使用 html 清除 字符过滤器 来移除掉所有的 HTML 标签,并且像把 Á 转换 为相对应的 Unicode 字符 Á 这样,转换 HTML 实体。一个分析器可能有 0 个或者多个字符 过滤器。分词器
一个分析器 必须 有一个唯一的分词器。 分词器把字符串分解成单个词条或者词汇单
元。 标准 分析器里使用的 标准 分词器 把一个字符串根据单词边界分解成单个词条,并 且移除掉大部分的标点符号,然而还有其他不同行为的分词器存在。
例如, 关键词 分词器 完整地输出 接收到的同样的字符串,并不做任何分词。 空格 分词 器 只根据空格分割文本 。 正则 分词器 根据匹配正则表达式来分割文本 。
词单元过滤器
经过分词,作为结果的 词单元流 会按照指定的顺序通过指定的词单元过滤器 。
词单元过滤器可以修改、添加或者移除词单元。我们已经提到过 lowercase 和 stop 词过滤 器 ,但是在 Elasticsearch 里面还有很多可供选择的词单元过滤器。词干过滤器 把单词 遏 制 为 词干。 ascii_folding 过滤器移除变音符,把一个像 "très" 这样的词转换为 "tres" 。ngram 和 edge_ngram 词单元过滤器 可以产生 适合用于部分匹配或者自动补全的词单元
# 创建自定义的分析器 # PUT http://localhost:9200/my_index { "settings": { "analysis": { "char_filter": { "&_to_and": { "type": "mapping", "mappings": ["&=> and "] } }, "filter": { "my_stopwords": { "type": "stop", "stopwords": ["the", "a"] } }, "analyzer": { "my_analyzer": { "type": "custom", "char_filter": ["html_strip", "&_to_and"], "tokenizer": "standard", "filter": ["lowercase", "my_stopwords"] } } } } } # 索引被创建以后,使用 analyzeAPI 来 测试这个新的分析器 # GET http://127.0.0.1:9200/my_index/_analyze { "text":"The quick & brown fox", "analyzer": "my_analyzer" } # 下面的缩略结果展示出我们的分析器正在正确地运行 { "tokens": [{ "token": "quick", "start_offset": 4, "end_offset": 9, "type": "<ALPHANUM>", "position": 1 }, { "token": "and", "start_offset": 10, "end_offset": 11, "type": "<ALPHANUM>", "position": 2 }, { "token": "brown", "start_offset": 12, "end_offset": 17, "type": "<ALPHANUM>", "position": 3 }, { "token": "fox", "start_offset": 18, "end_offset": 21, "type": "<ALPHANUM>", "position": 4 }] }
当我们使用 indexAPI 更新文档 ,可以一次性读取原始文档,做我们的修改,然后重新索引整个文档 。 最近的索引请求将被作为最终结果,无论最后哪一个文档被索引,都将被唯一存储在 Elasticsearch 中。如果其他人同时更改这个文档,他们的更改将丢失。变更越频繁,读数据和更新数据的间隙越长,也就越可能丢失变更。 在数据库领域中,有两种方法通常被用来确保并发更新时变更不会丢失:悲观并发控制和乐观并发控制。
Elasticsearch有两种并发控制: