今天要说的技术方案也是有一定项目背景的。在上一个项目中,我们需要对一个redis集群中过期的key进行处理,这是一个分布式系统,考虑到高可用性,需要具备过期处理功能的服务有多个副本,这样我们就要求在同一时间内仅有一个副本可以对过期的key进行处理,如果该副本挂掉,系统会在其他副本中再挑选出一个来处理过期的key。
很显然,这里涉及到一个选主(leader election)的过程。每当涉及选主,很多人就会想到一些高大上的分布式一致性/共识算法,比如:raft、paxos等。当然使用这些算法自然没有问题,但是也给系统徒增了很多复杂性。能否有一些更简单直接的方案呢?我们已经有了一个redis集群,是否可以利用redis集群的能力来完成这一点呢?
Redis原生并没有提供leader election算法,但Redis作者提供了分布式锁的算法,也就是说我们可以用分布式锁来实现一个简单的选主功能,见下图:
在上图中我们看到,只有持有锁的服务才具备操作数据的资格,也就是说持有锁的服务的角色是leader,而其他服务则继续尝试去持有锁,它们是follower的角色。
在redis官方有关分布式锁算法的介绍页面中,作者给出了各种编程语言的推荐实现,而Go语言的推荐实现仅redsync这一种。在这篇短文中,我们就来使用redsync实现基于Redis分布式锁的选主方案。
在Go生态中,连接和操作redis的主流go客户端库有go-redis和redigo。最新的redsync版本底层redis driver既支持go-redis,也支持redigo,我个人日常使用最多的是go-redis这个客户端,这里我们就用go-redis。
redsync github主页中给出的例子是基于单redis node的分布式锁示例。下面我们也先以单redis节点来看看如何通过Redis的分布式锁实现我们的业务逻辑:
// github.com/bigwhite/experiments/blob/master/redis-cluster-distributed-lock/standalone/main.go 1 package main 2 3 import ( 4 "context" 5 "log" 6 "os" 7 "os/signal" 8 "sync" 9 "sync/atomic" 10 "syscall" 11 "time" 12 13 goredislib "github.com/go-redis/redis/v8" 14 "github.com/go-redsync/redsync/v4" 15 "github.com/go-redsync/redsync/v4/redis/goredis/v8" 16 ) 17 18 const ( 19 redisKeyExpiredEventSubj = `__keyevent@0__:expired` 20 ) 21 22 var ( 23 isLeader int64 24 m atomic.Value 25 id string 26 mutexName = "the-year-of-the-ox-2021" 27 ) 28 29 func init() { 30 if len(os.Args) < 2 { 31 panic("args number is not correct") 32 } 33 id = os.Args[1] 34 } 35 36 func tryToBecomeLeader() (bool, func() (bool, error), error) { 37 client := goredislib.NewClient(&goredislib.Options{ 38 Addr: "localhost:6379", 39 }) 40 pool := goredis.NewPool(client) 41 rs := redsync.New(pool) 42 43 mutex := rs.NewMutex(mutexName) 44 45 if err := mutex.Lock(); err != nil { 46 client.Close() 47 return false, nil, err 48 } 49 50 return true, func() (bool, error) { 51 return mutex.Unlock() 52 }, nil 53 } 54 55 func doElectionAndMaintainTheStatus(quit <-chan struct{}) { 56 ticker := time.NewTicker(time.Second * 5) 57 var err error 58 var ok bool 59 var cf func() (bool, error) 60 61 c := goredislib.NewClient(&goredislib.Options{ 62 Addr: "localhost:6379", 63 }) 64 defer c.Close() 65 for { 66 select { 67 case <-ticker.C: 68 if atomic.LoadInt64(&isLeader) == 0 { 69 ok, cf, err = tryToBecomeLeader() 70 if ok { 71 log.Printf("prog-%s become leader successfully\n", id) 72 atomic.StoreInt64(&isLeader, 1) 73 defer cf() 74 } 75 if !ok || err != nil { 76 log.Printf("prog-%s try to become leader failed: %s\n", id, err) 77 } 78 } else { 79 log.Printf("prog-%s is the leader\n", id) 80 // update the lock live time and maintain the leader status 81 c.Expire(context.Background(), mutexName, 8*time.Second) 82 } 83 case <-quit: 84 return 85 } 86 } 87 } 88 89 func doExpire(quit <-chan struct{}) { 90 // subscribe the expire event of redis 91 c := goredislib.NewClient(&goredislib.Options{ 92 Addr: "localhost:6379"}) 93 defer c.Close() 94 95 ctx := context.Background() 96 pubsub := c.Subscribe(ctx, redisKeyExpiredEventSubj) 97 _, err := pubsub.Receive(ctx) 98 if err != nil { 99 log.Printf("prog-%s subscribe expire event failed: %s\n", id, err) 100 return 101 } 102 log.Printf("prog-%s subscribe expire event ok\n", id) 103 104 // Go channel which receives messages from redis db 105 ch := pubsub.Channel() 106 for { 107 select { 108 case event := <-ch: 109 key := event.Payload 110 if atomic.LoadInt64(&isLeader) == 0 { 111 break 112 } 113 log.Printf("prog-%s 收到并处理一条过期消息[key:%s]", id, key) 114 case <-quit: 115 return 116 } 117 } 118 } 119 120 func main() { 121 var wg sync.WaitGroup 122 wg.Add(2) 123 var quit = make(chan struct{}) 124 125 go func() { 126 doElectionAndMaintainTheStatus(quit) 127 wg.Done() 128 }() 129 go func() { 130 doExpire(quit) 131 wg.Done() 132 }() 133 134 c := make(chan os.Signal, 1) 135 signal.Notify(c, syscall.SIGINT, syscall.SIGTERM) 136 _ = <-c 137 close(quit) 138 log.Printf("recv exit signal...") 139 wg.Wait() 140 log.Printf("program exit ok") 141 }
上面示例代码比较长,但它很完整。我们一点点来看。
首先,我们看120~141行的main函数结构。在这个函数中,我们创建了两个新goroutine,main goroutine通过sync.WaitGroup等待这两个子goroutine的退出并使用quit channel模式(关于goroutine的并发模式的详解,可以参考我的专栏文章《Go并发模型和常见并发模式》)在收到系统信号(关于signal包的使用,请参见我的专栏文章《小心被kill!不要忽略对系统信号的处理》)后通知两个子goroutine退出。
接下来,我们逐个看两个子goroutine的执行逻辑。第一个goroutine执行的是doElectionAndMaintainTheStatus函数。该函数会持续尝试去持有分布式锁(tryToBecomeLeader),一旦持有,它就变成了分布式系统中的leader角色;成为leader角色的副本会保持其角色状态(见81行)。
尝试持有分布式锁并成为leader是tryToBecomeLeader函数的主要职责,该函数直接使用了redsync包的算法,并利用与redis node建立的连接(NewClient),尝试建立并持有分布式锁“the-year-of-the-ox-2021”。我们使用的是默认的锁属性,从redsync包的NewMutex方法源码,我们能看到锁默认属性如下:
// github.com/go-redsync/redsync/redsync.go // NewMutex returns a new distributed mutex with given name. func (r *Redsync) NewMutex(name string, options ...Option) *Mutex { m := &Mutex{ name: name, expiry: 8 * time.Second, tries: 32, delayFunc: func(tries int) time.Duration { return 500 * time.Millisecond }, genValueFunc: genValue, factor: 0.01, quorum: len(r.pools)/2 + 1, pools: r.pools, } for _, o := range options { o.Apply(m) } return m }
我们看到锁有一个过期时间属性(expiry),过期时间默认仅有8秒。问题来了:一旦锁过期了,那么情况会怎样?事实是一旦锁过期掉,在leader尚未解锁时,其follower也会加锁成功,因为原锁的key已经因过期而被删除掉了。长此以往,整个分布式系统就会存在多个自视为leader的进程,整个处理逻辑就乱了!
解决这个问题至少可以有三种方案:
方案1的问题在于,一旦持有锁的leader因意外异常退出并且尚未unlock,那么由于锁的过期时间超级长,其他follower依然无法持有锁而变成下一任leader,导致整个分布式系统的leader缺失,业务逻辑无法继续进行;
方案2其实是基于Redis分布式锁的常规使用方式,但对于像我这里的业务场景,频繁lock和unlock没必要,我只需要保证系统中有一个leader一直在处理过期event即可,在服务间轮流处理并非我的需求。但这个方案是一个可行的方案,代码逻辑清晰也简单。
方案3则是非常适合我的业务场景的方案,持有锁的leader通过定期(<8s)的更新锁的过期时间来保证锁的有效性,这样避免了leader频繁切换。这里我们就使用了这一方案,见78~82行,我们在定时器的帮助下,定期重新设置了锁的过期时间(8s)。
在上述示例代码中,我们用一个变量isLeader来标识该服务是否持有了锁,由于该变量被多个goroutine访问和修改,因此我们通过atomic包实现对其的原子访问以避免出现race问题。
最后,我们说说这段示例承载的业务逻辑(doExpire函数)。真正的业务逻辑由doExpire函数实现。它通过监听redis 0号库的key空间的过期事件实现对目标key的过期处理(这里并未体现这一点)。
subscribe的subject字符串为**keyevent@0:expired**,这个字符串的组成含义可以参考redis官方对notifications的说明,这里的字串表明我们要监听key事件,在0号数据库,事件类型是key过期。
当在0号数据库有key过期后,我们的订阅channel(105行)就会收到一个事件,通过event的Payload我们可以得到key的名称,后续我们可以根据key的名字来过滤掉我们不关心的key,而仅对期望的key做相应处理。
在默认配置下, redis的通知功能处于关闭状态。我们需要通过命令或在redis.conf中开启这一功能。
$redis-cli 127.0.0.1:6379> config set notify-keyspace-events KEx OK
到这里,我们已经搞清楚了上面示例代码的原理,下面我们就来真实运行一次上面的代码,我们编译上面代码并启动三个实例:
$go build main.go $./main 1 $./main 2 $./main 3
由于**./main 1**先启动,因此第一个启动的服务一般会先成为leader:
$main 1 2021/02/11 05:43:15 prog-1 subscribe expire event ok 2021/02/11 05:43:20 prog-1 become leader successfully 2021/02/11 05:43:25 prog-1 is the leader 2021/02/11 05:43:30 prog-1 is the leader
而其他两个服务会定期尝试去持有锁:
$main 2 2021/02/11 05:43:17 prog-2 subscribe expire event ok 2021/02/11 05:43:37 prog-2 try to become leader failed: redsync: failed to acquire lock 2021/02/11 05:43:53 prog-2 try to become leader failed: redsync: failed to acquire lock $main 3 2021/02/11 05:43:18 prog-3 subscribe expire event ok 2021/02/11 05:43:38 prog-3 try to become leader failed: redsync: failed to acquire lock 2021/02/11 05:43:54 prog-3 try to become leader failed: redsync: failed to acquire lock
这时我们通过redis-cli在0号数据库中创建一个key1,过期时间5s:
$redis-cli 127.0.0.1:6379> setex key1 5 value1 OK
5s后,我们会在prog-1这个服务实例的输出日志中看到如下内容:
2021/02/11 05:43:50 prog-1 is the leader 2021/02/11 05:43:53 prog-1 收到并处理一条过期消息[key:key1] 2021/02/11 05:43:55 prog-1 is the leader
接下来,我们停掉prog-1:
2021/02/11 05:44:00 prog-1 is the leader ^C2021/02/11 05:44:01 recv exit signal... redis: 2021/02/11 05:44:01 pubsub.go:168: redis: discarding bad PubSub connection: read tcp [::1]:56594->[::1]:6379: use of closed network connection 2021/02/11 05:44:01 program exit ok
在停掉prog-1后的瞬间,prog-2成功持有了锁,并成为leader:
2021/02/11 05:44:01 prog-2 become leader successfully 2021/02/11 05:44:01 prog-2 is the leader
我们再通过redis-cli在0号数据库中创建一个key2,过期时间5s:
$redis-cli 127.0.0.1:6379> setex key2 5 value2 OK
5s后,我们会在prog-2这个服务实例的输出日志中看到如下内容:
2021/02/11 05:44:17 prog-2 is the leader 2021/02/11 05:44:19 prog-2 收到并处理一条过期消息[key:key2] 2021/02/11 05:44:22 prog-2 is the leader
从运行的结果来看,该分布式系统的运行逻辑是符合我们的设计预期的。
上面,我们实现了基于单个redis节点的分布式锁的选主功能。在生产环境,我们很少会使用单节点的Redis,通常会使用Redis集群以保证高可用性。
最新的redsync已经支持了redis cluster(基于go-redis)。和单节点唯一不同的是,我们传递给redsync的pool所使用的与redis的连接由Client类型变为了ClusterClient类型:
// github.com/bigwhite/experiments/blob/master/redis-cluster-distributed-lock/cluster/v1/main.go const ( redisClusterMasters = "localhost:30001,localhost:30002,localhost:30003" ) func main() { ... ... client := goredislib.NewClusterClient(&goredislib.ClusterOptions{ Addrs: strings.Split(redisClusterMasters, ",")}) defer client.Close() ... ... }
我们在本地启动的redis cluster,三个master的地址分别为:localhost:30001、localhost:30002和localhost:30003。我们将master的地址组成一个逗号分隔的常量redisClusterMasters。
我们对上面单节点的代码做了改进,将Redis连接的创建放在了main中,并将client连接作为参数传递给各个goroutine的运行函数。下面是cluster版示例代码完整版(v1):
// github.com/bigwhite/experiments/blob/master/redis-cluster-distributed-lock/cluster/v1/main.go 1 package main 2 3 import ( 4 "context" 5 "log" 6 "os" 7 "os/signal" 8 "strings" 9 "sync" 10 "sync/atomic" 11 "syscall" 12 "time" 13 14 goredislib "github.com/go-redis/redis/v8" 15 "github.com/go-redsync/redsync/v4" 16 "github.com/go-redsync/redsync/v4/redis/goredis/v8" 17 ) 18 19 const ( 20 redisKeyExpiredEventSubj = `__keyevent@0__:expired` 21 redisClusterMasters = "localhost:30001,localhost:30002,localhost:30003" 22 ) 23 24 var ( 25 isLeader int64 26 m atomic.Value 27 id string 28 mutexName = "the-year-of-the-ox-2021" 29 ) 30 31 func init() { 32 if len(os.Args) < 2 { 33 panic("args number is not correct") 34 } 35 id = os.Args[1] 36 } 37 38 func tryToBecomeLeader(client *goredislib.ClusterClient) (bool, func() (bool, error), error) { 39 pool := goredis.NewPool(client) 40 rs := redsync.New(pool) 41 42 mutex := rs.NewMutex(mutexName) 43 44 if err := mutex.Lock(); err != nil { 45 return false, nil, err 46 } 47 48 return true, func() (bool, error) { 49 return mutex.Unlock() 50 }, nil 51 } 52 53 func doElectionAndMaintainTheStatus(c *goredislib.ClusterClient, quit <-chan struct{}) { 54 ticker := time.NewTicker(time.Second * 5) 55 var err error 56 var ok bool 57 var cf func() (bool, error) 58 59 for { 60 select { 61 case <-ticker.C: 62 if atomic.LoadInt64(&isLeader) == 0 { 63 ok, cf, err = tryToBecomeLeader(c) 64 if ok { 65 log.Printf("prog-%s become leader successfully\n", id) 66 atomic.StoreInt64(&isLeader, 1) 67 defer cf() 68 } 69 if !ok || err != nil { 70 log.Printf("prog-%s try to become leader failed: %s\n", id, err) 71 } 72 } else { 73 log.Printf("prog-%s is the leader\n", id) 74 // update the lock live time and maintain the leader status 75 c.Expire(context.Background(), mutexName, 8*time.Second) 76 } 77 case <-quit: 78 return 79 } 80 } 81 } 82 83 func doExpire(c *goredislib.ClusterClient, quit <-chan struct{}) { 84 // subscribe the expire event of redis 85 ctx := context.Background() 86 pubsub := c.Subscribe(ctx, redisKeyExpiredEventSubj) 87 _, err := pubsub.Receive(ctx) 88 if err != nil { 89 log.Printf("prog-%s subscribe expire event failed: %s\n", id, err) 90 return 91 } 92 log.Printf("prog-%s subscribe expire event ok\n", id) 93 94 // Go channel which receives messages from redis db 95 ch := pubsub.Channel() 96 for { 97 select { 98 case event := <-ch: 99 key := event.Payload 100 if atomic.LoadInt64(&isLeader) == 0 { 101 break 102 } 103 log.Printf("prog-%s 收到并处理一条过期消息[key:%s]", id, key) 104 case <-quit: 105 return 106 } 107 } 108 } 109 110 func main() { 111 var wg sync.WaitGroup 112 wg.Add(2) 113 var quit = make(chan struct{}) 114 client := goredislib.NewClusterClient(&goredislib.ClusterOptions{ 115 Addrs: strings.Split(redisClusterMasters, ",")}) 116 defer client.Close() 117 118 go func() { 119 doElectionAndMaintainTheStatus(client, quit) 120 wg.Done() 121 }() 122 go func() { 123 doExpire(client, quit) 124 wg.Done() 125 }() 126 127 c := make(chan os.Signal, 1) 128 signal.Notify(c, syscall.SIGINT, syscall.SIGTERM) 129 _ = <-c 130 close(quit) 131 log.Printf("recv exit signal...") 132 wg.Wait() 133 log.Printf("program exit ok") 134 }
和单一节点一样,我们运行三个服务实例:
$go build main.go $main 1 2021/02/11 09:49:16 prog-1 subscribe expire event ok 2021/02/11 09:49:22 prog-1 become leader successfully 2021/02/11 09:49:26 prog-1 is the leader 2021/02/11 09:49:31 prog-1 is the leader 2021/02/11 09:49:36 prog-1 is the leader ... ... $main 2 2021/02/11 09:49:19 prog-2 subscribe expire event ok 2021/02/11 09:49:40 prog-2 try to become leader failed: redsync: failed to acquire lock 2021/02/11 09:49:55 prog-2 try to become leader failed: redsync: failed to acquire lock ... ... $main 3 2021/02/11 09:49:31 prog-3 subscribe expire event ok 2021/02/11 09:49:52 prog-3 try to become leader failed: redsync: failed to acquire lock 2021/02/11 09:50:07 prog-3 try to become leader failed: redsync: failed to acquire lock ... ...
我们看到基于Redis集群版的分布式锁也生效了!prog-1成功持有锁并成为leader! 接下来我们再来看看对过期key事件的处理!
我们通过下面命令让redis-cli连接到集群中的所有节点并设置每个节点开启key空间的事件通知:
三主: $redis-cli -c -h localhost -p 30001 localhost:30001> config set notify-keyspace-events KEx OK $redis-cli -c -h localhost -p 30002 localhost:30002> config set notify-keyspace-events KEx OK $redis-cli -c -h localhost -p 30003 localhost:30003> config set notify-keyspace-events KEx OK 三从: $redis-cli -c -h localhost -p 30004 localhost:30004> config set notify-keyspace-events KEx OK $redis-cli -c -h localhost -p 30005 localhost:30005> config set notify-keyspace-events KEx OK $redis-cli -c -h localhost -p 30006 localhost:30006> config set notify-keyspace-events KEx OK
在node1节点上,我们set一个有效期为5s的key:key1:
localhost:30001> setex key1 5 value1 -> Redirected to slot [9189] located at 127.0.0.1:30002 OK
等待5s后,我们的leader:prog-1并没有如预期那样受到expire通知! 这是怎么回事呢?追本溯源,我们查看一下redis官方文档关于notifications的说明,我们在文档最后一段找到如下描述:
Events in a cluster Every node of a Redis cluster generates events about its own subset of the keyspace as described above. However, unlike regular Pub/Sub communication in a cluster, events' notifications are not broadcasted to all nodes. Put differently, keyspace events are node-specific. This means that to receive all keyspace events of a cluster, clients need to subscribe to each of the nodes.
这段话大致意思是Redis集群中的每个redis node都有自己的keyspace,事件通知不会被广播到集群内的所有节点,即keyspace的事件是node相关的。如果要接收一个集群中的所有keyspace的event,那客户端就需要Subcribe集群内的所有节点。我们来改一下代码,形成v2版(考虑到篇幅就不列出所有代码了,仅列出相对于v1版变化的代码):
// github.com/bigwhite/experiments/blob/master/redis-cluster-distributed-lock/cluster/v2/main.go ... ... 19 const ( 20 redisKeyExpiredEventSubj = `__keyevent@0__:expired` 21 redisClusterMasters = "localhost:30001,localhost:30002,localhost:30003,localhost:30004,localhost:30005,localhost:30006" 22 ) ... ... 83 func doExpire(quit <-chan struct{}) { 84 var ch = make(chan *goredislib.Message) 85 nodes := strings.Split(redisClusterMasters, ",") 86 87 for _, node := range nodes { 88 node := node 89 go func(quit <-chan struct{}) { 90 c := goredislib.NewClient(&goredislib.Options{ 91 Addr: node}) 92 defer c.Close() 93 94 // subscribe the expire event of redis 95 ctx := context.Background() 96 pubsub := c.Subscribe(ctx, redisKeyExpiredEventSubj) 97 _, err := pubsub.Receive(ctx) 98 if err != nil { 99 log.Printf("prog-%s subscribe expire event of node[%s] failed: %s\n", 100 id, node, err) 101 return 102 } 103 log.Printf("prog-%s subscribe expire event of node[%s] ok\n", id, node) 104 105 // Go channel which receives messages from redis db 106 pch := pubsub.Channel() 107 108 for { 109 select { 110 case event := <-pch: 111 ch <- event 112 case <-quit: 113 return 114 } 115 } 116 }(quit) 117 } 118 for { 119 select { 120 case event := <-ch: 121 key := event.Payload 122 if atomic.LoadInt64(&isLeader) == 0 { 123 break 124 } 125 log.Printf("prog-%s 收到并处理一条过期消息[key:%s]", id, key) 126 case <-quit: 127 return 128 } 129 } 130 } 131 132 func main() { 133 var wg sync.WaitGroup 134 wg.Add(2) 135 var quit = make(chan struct{}) 136 client := goredislib.NewClusterClient(&goredislib.ClusterOptions{ 137 Addrs: strings.Split(redisClusterMasters, ",")}) 138 defer client.Close() 139 140 go func() { 141 doElectionAndMaintainTheStatus(client, quit) 142 wg.Done() 143 }() 144 go func() { 145 doExpire(quit) 146 wg.Done() 147 }() 148 149 c := make(chan os.Signal, 1) 150 signal.Notify(c, syscall.SIGINT, syscall.SIGTERM) 151 _ = <-c 152 close(quit) 153 log.Printf("recv exit signal...") 154 wg.Wait() 155 log.Printf("program exit ok") 156 }
在这个新版代码中,我们在每个新goroutine中实现对redis一个节点的Subscribe,并将收到的Event notifications通过“扇入”模式(更多关于并发扇入模式的内容,可以参考我的Go技术专栏文章《Go并发模型和常见并发模式》)统一写入到运行doExpire的goroutine中做统一处理。
我们再来运行一下这个示例,并在不同时机创建多个key来验证通知接收和处理的效果:
$main 1 2021/02/11 10:29:21 prog-1 subscribe expire event of node[localhost:30004] ok 2021/02/11 10:29:21 prog-1 subscribe expire event of node[localhost:30001] ok 2021/02/11 10:29:21 prog-1 subscribe expire event of node[localhost:30006] ok 2021/02/11 10:29:21 prog-1 subscribe expire event of node[localhost:30002] ok 2021/02/11 10:29:21 prog-1 subscribe expire event of node[localhost:30003] ok 2021/02/11 10:29:21 prog-1 subscribe expire event of node[localhost:30005] ok 2021/02/11 10:29:26 prog-1 become leader successfully 2021/02/11 10:29:31 prog-1 is the leader 2021/02/11 10:29:36 prog-1 is the leader 2021/02/11 10:29:41 prog-1 is the leader 2021/02/11 10:29:46 prog-1 is the leader 2021/02/11 10:29:47 prog-1 收到并处理一条过期消息[key:key1] 2021/02/11 10:29:51 prog-1 is the leader 2021/02/11 10:29:51 prog-1 收到并处理一条过期消息[key:key2] 2021/02/11 10:29:56 prog-1 收到并处理一条过期消息[key:key3] 2021/02/11 10:29:56 prog-1 is the leader 2021/02/11 10:30:01 prog-1 is the leader 2021/02/11 10:30:06 prog-1 is the leader ^C2021/02/11 10:30:08 recv exit signal... $main 3 2021/02/11 10:29:27 prog-3 subscribe expire event of node[localhost:30004] ok 2021/02/11 10:29:27 prog-3 subscribe expire event of node[localhost:30006] ok 2021/02/11 10:29:27 prog-3 subscribe expire event of node[localhost:30002] ok 2021/02/11 10:29:27 prog-3 subscribe expire event of node[localhost:30001] ok 2021/02/11 10:29:27 prog-3 subscribe expire event of node[localhost:30005] ok 2021/02/11 10:29:27 prog-3 subscribe expire event of node[localhost:30003] ok 2021/02/11 10:29:48 prog-3 try to become leader failed: redsync: failed to acquire lock 2021/02/11 10:30:03 prog-3 try to become leader failed: redsync: failed to acquire lock 2021/02/11 10:30:08 prog-3 become leader successfully 2021/02/11 10:30:08 prog-3 is the leader 2021/02/11 10:30:12 prog-3 is the leader 2021/02/11 10:30:17 prog-3 is the leader 2021/02/11 10:30:22 prog-3 is the leader 2021/02/11 10:30:23 prog-3 收到并处理一条过期消息[key:key4] 2021/02/11 10:30:27 prog-3 is the leader ^C2021/02/11 10:30:28 recv exit signal... $main 2 2021/02/11 10:29:24 prog-2 subscribe expire event of node[localhost:30005] ok 2021/02/11 10:29:24 prog-2 subscribe expire event of node[localhost:30006] ok 2021/02/11 10:29:24 prog-2 subscribe expire event of node[localhost:30003] ok 2021/02/11 10:29:24 prog-2 subscribe expire event of node[localhost:30004] ok 2021/02/11 10:29:24 prog-2 subscribe expire event of node[localhost:30002] ok 2021/02/11 10:29:24 prog-2 subscribe expire event of node[localhost:30001] ok 2021/02/11 10:29:45 prog-2 try to become leader failed: redsync: failed to acquire lock 2021/02/11 10:30:01 prog-2 try to become leader failed: redsync: failed to acquire lock 2021/02/11 10:30:16 prog-2 try to become leader failed: redsync: failed to acquire lock 2021/02/11 10:30:28 prog-2 become leader successfully 2021/02/11 10:30:28 prog-2 is the leader 2021/02/11 10:30:29 prog-2 is the leader 2021/02/11 10:30:34 prog-2 is the leader 2021/02/11 10:30:39 prog-2 收到并处理一条过期消息[key:key5] 2021/02/11 10:30:39 prog-2 is the leader ^C2021/02/11 10:30:41 recv exit signal...
这个运行结果如预期!
不过这个方案显然也不是那么理想,毕竟我们要单独Subscribe每个集群内的redis节点,目前没有理想方案,除非redis cluster支持带广播的Event notification。
以上示例代码可以在这里 https://github.com/bigwhite/experiments/tree/master/redis-cluster-distributed-lock 下载 。
Go技术专栏“改善Go语⾔编程质量的50个有效实践”正在慕课网火热热销中!本专栏主要满足广大gopher关于Go语言进阶的需求,围绕如何写出地道且高质量Go代码给出50条有效实践建议,上线后收到一致好评!欢迎大家订阅!
我的网课“Kubernetes实战:高可用集群搭建、配置、运维与应用”在慕课网热卖中,欢迎小伙伴们订阅学习!
讲师主页:tonybai_cn
讲师博客: Tony Bai
专栏:《改善Go语言编程质量的50个有效实践》
实战课:《Kubernetes实战:高可用集群搭建,配置,运维与应用》
免费课:《Kubernetes基础:开启云原生之门》