国庆在家无聊,我随手翻了一下家里数据库相关的书籍,这一翻我就看上瘾了,因为大学比较熟悉的一些数据库范式我居然都忘了,怀揣着好奇心我就看了一个小国庆。
看的过程中我也做了一些小笔记,可能没我之前系统文章那么有趣,但是绝对也是干货十足,适合大家去回顾或者面试突击的适合看看,也不多说先放图。
InnoDB 是 MySQL 默认的事务型存储引擎,只要在需要它不支持的特性时,才考虑使用其他存储引擎。
InnoDB 采用 MVCC 来支持高并发,并且实现了四个标准隔离级别(未提交读、提交读、可重复读、可串行化)。其默认级别时可重复读(REPEATABLE READ),在可重复读级别下,通过 MVCC + Next-Key Locking 防止幻读。
主索引时聚簇索引,在索引中保存了数据,从而避免直接读取磁盘,因此对主键查询有很高的性能。
InnoDB 内部做了很多优化,包括从磁盘读取数据时采用的可预测性读,能够自动在内存中创建 hash 索引以加速读操作的自适应哈希索引,以及能够加速插入操作的插入缓冲区等。
InnoDB 支持真正的在线热备份,MySQL 其他的存储引擎不支持在线热备份,要获取一致性视图需要停止对所有表的写入,而在读写混合的场景中,停止写入可能也意味着停止读取。
设计简单,数据以紧密格式存储。对于只读数据,或者表比较小、可以容忍修复操作,则依然可以使用它。
提供了大量的特性,包括压缩表、空间数据索引等。
不支持事务。
不支持行级锁,只能对整张表加锁,读取时会对需要读到的所有表加共享锁,写入时则对表加排它锁。但在表有读取操作的同时,也可以往表中插入新的记录,这被称为并发插入(CONCURRENT INSERT)。
可以手工或者自动执行检查和修复操作,但是和事务恢复以及崩溃恢复不同,可能导致一些数据丢失,而且修复操作是非常慢的。
如果指定了 DELAY_KEY_WRITE 选项,在每次修改执行完成时,不会立即将修改的索引数据写入磁盘,而是会写到内存中的键缓冲区,只有在清理键缓冲区或者关闭表的时候才会将对应的索引块写入磁盘。这种方式可以极大的提升写入性能,但是在数据库或者主机崩溃时会造成索引损坏,需要执行修复操作。
B Tree 指的是 Balance Tree,也就是平衡树,平衡树是一颗查找树,并且所有叶子节点位于同一层。
B+ Tree 是 B 树的一种变形,它是基于 B Tree 和叶子节点顺序访问指针进行实现,通常用于数据库和操作系统的文件系统中。
B+ 树有两种类型的节点:内部节点(也称索引节点)和叶子节点,内部节点就是非叶子节点,内部节点不存储数据,只存储索引,数据都存在叶子节点。
内部节点中的 key 都按照从小到大的顺序排列,对于内部节点中的一个 key,左子树中的所有 key 都小于它,右子树中的 key 都大于等于它,叶子节点的记录也是按照从小到大排列的。
每个叶子节点都存有相邻叶子节点的指针。
查找
查找以典型的方式进行,类似于二叉查找树。起始于根节点,自顶向下遍历树,选择其分离值在要查找值的任意一边的子指针。在节点内部典型的使用是二分查找来确定这个位置。
插入
Otherwise,before inserting the new record
split the bucket.
B-trees grow as the root and not at the leaves.
删除
和插入类似,只不过是自下而上的合并操作。
AVL 树
平衡二叉树,一般是用平衡因子差值决定并通过旋转来实现,左右子树树高差不超过1,那么和红黑树比较它是严格的平衡二叉树,平衡条件非常严格(树高差只有1),只要插入或删除不满足上面的条件就要通过旋转来保持平衡。由于旋转是非常耗费时间的。所以 AVL 树适用于插入/删除次数比较少,但查找多的场景。
红黑树
通过对从根节点到叶子节点路径上各个节点的颜色进行约束,确保没有一条路径会比其他路径长2倍,因而是近似平衡的。所以相对于严格要求平衡的AVL树来说,它的旋转保持平衡次数较少。适合,查找少,插入/删除次数多的场景。(现在部分场景使用跳表来替换红黑树,可搜索“为啥 redis 使用跳表(skiplist)而不是使用 red-black?”)
B/B+ 树
多路查找树,出度高,磁盘IO低,一般用于数据库系统中。
红黑树等平衡树也可以用来实现索引,但是文件系统及数据库系统普遍采用 B+ Tree 作为索引结构,主要有以下两个原因:
(一)磁盘 IO 次数
B+ 树一个节点可以存储多个元素,相对于红黑树的树高更低,磁盘 IO 次数更少。
(二)磁盘预读特性
为了减少磁盘 I/O 操作,磁盘往往不是严格按需读取,而是每次都会预读。预读过程中,磁盘进行顺序读取,顺序读取不需要进行磁盘寻道。每次会读取页的整数倍。
操作系统一般将内存和磁盘分割成固定大小的块,每一块称为一页,内存与磁盘以页为单位交换数据。数据库系统将索引的一个节点的大小设置为页的大小,使得一次 I/O 就能完全载入一个节点。
B+ 树的磁盘 IO 更低
B+ 树的内部节点并没有指向关键字具体信息的指针。因此其内部节点相对 B 树更小。如果把所有同一内部结点的关键字存放在同一盘块中,那么盘块所能容纳的关键字数量也越多。一次性读入内存中的需要查找的关键字也就越多。相对来说IO读写次数也就降低了。
B+ 树的查询效率更加稳定
由于非叶子结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。所以任何关键字的查找必须走一条从根结点到叶子结点的路。所有关键字查询的路径长度相同,导致每一个数据的查询效率相当。
B+ 树元素遍历效率高
B 树在提高了磁盘IO性能的同时并没有解决元素遍历的效率低下的问题。正是为了解决这个问题,B+树应运而生。B+树只要遍历叶子节点就可以实现整棵树的遍历。而且在数据库中基于范围的查询是非常频繁的,而 B 树不支持这样的操作(或者说效率太低)。
索引是在存储引擎层实现的,而不是在服务器层实现的,所以不同存储引擎具有不同的索引类型和实现。
是大多数 MySQL 存储引擎的默认索引类型。
InnoDB 的 B+Tree 索引分为主索引和辅助索引。主索引的叶子节点 data 域记录着完整的数据记录,这种索引方式被称为聚簇索引。因为无法把数据行存放在两个不同的地方,所以一个表只能有一个聚簇索引。
辅助索引的叶子节点的 data 域记录着主键的值,因此在使用辅助索引进行查找时,需要先查找到主键值,然后再到主索引中进行查找,这个过程也被称作回表。
哈希索引能以 O(1) 时间进行查找,但是失去了有序性:
InnoDB 存储引擎有一个特殊的功能叫“自适应哈希索引”,当某个索引值被使用的非常频繁时,会在 B+Tree 索引之上再创建一个哈希索引,这样就让 B+Tree 索引具有哈希索引的一些优点,比如快速的哈希查找。
MyISAM 存储引擎支持全文索引,用于查找文本中的关键词,而不是直接比较是否相等。
查找条件使用 MATCH AGAINST,而不是普通的 WHERE。
全文索引使用倒排索引实现,它记录着关键词到其所在文档的映射。
InnoDB 存储引擎在 MySQL 5.6.4 版本中也开始支持全文索引。
MyISAM 存储引擎支持空间数据索引(R-Tree),可以用于地理数据存储。空间数据索引会从所有维度来索引数据,可以有效地使用任意维度来进行组合查询。
必须使用 GIS 相关的函数来维护数据。
在进行查询时,索引列不能是表达式的一部分,也不能是函数的参数,否则无法使用索引。
例如下面的查询不能使用 actor_id 列的索引:
SELECT actor_id FROM sakila.actor WHERE actor_id + 1 = 5;
在需要使用多个列作为条件进行查询时,使用多列索引比使用多个单列索引性能更好。例如下面的语句中,最好把 actor_id 和 film_id 设置为多列索引。
SELECT film_id, actor_ id FROM sakila.film_actor WHERE actor_id = 1 AND film_id = 1;
让选择性最强的索引列放在前面。
索引的选择性是指:不重复的索引值和记录总数的比值。最大值为 1,此时每个记录都有唯一的索引与其对应。选择性越高,每个记录的区分度越高,查询效率也越高。
例如下面显示的结果中 customer_id 的选择性比 staff_id 更高,因此最好把 customer_id 列放在多列索引的前面。
SELECT COUNT(DISTINCT staff_id)/COUNT(*) AS staff_id_selectivity, COUNT(DISTINCT customer_id)/COUNT(*) AS customer_id_selectivity, COUNT(*) FROM payment;
staff_id_selectivity: 0.0001 customer_id_selectivity: 0.0373 COUNT(*): 16049
对于 BLOB、TEXT 和 VARCHAR 类型的列,必须使用前缀索引,只索引开始的部分字符。
前缀长度的选取需要根据索引选择性来确定。
索引包含所有需要查询的字段的值。
具有以下优点:
为什么对于非常小的表,大部分情况下简单的全表扫描比建立索引更高效?如果一个表比较小,那么显然直接遍历表比走索引要快(因为需要回表)。
注:首先,要注意这个答案隐含的条件是查询的数据不是索引的构成部分,否也不需要回表操作。其次,查询条件也不是主键,否则可以直接从聚簇索引中拿到数据。
explain 用来分析 SELECT 查询语句,开发人员可以通过分析 Explain 结果来优化查询语句。
常用的有 SIMPLE 简单查询,UNION 联合查询,SUBQUERY 子查询等。
要查询的表
The possible indexes to choose
可选择的索引
The index actually chosen
实际使用的索引
Estimate of rows to be examined
扫描的行数
索引查询类型,经常用到的索引查询类型:
**const:使用主键或者唯一索引进行查询的时候只有一行匹配
ref:使用非唯一索引
range:使用主键、单个字段的辅助索引、多个字段的辅助索引的最后一个字段进行范围查询
index:和all的区别是扫描的是索引树
all:扫描全表:**
触发条件:表只有一行,这是一个 const type 的特殊情况
触发条件:在使用主键或者唯一索引进行查询的时候只有一行匹配。
SELECT * FROM tbl_name WHERE primary_key=1; SELECT * FROM tbl_name WHERE primary_key_part1=1 AND primary_key_part2=2;
触发条件:在进行联接查询的,使用主键或者唯一索引并且只匹配到一行记录的时候
SELECT * FROM ref_table,other_table WHERE ref_table.key_column=other_table.column; SELECT * FROM ref_table,other_table WHERE ref_table.key_column_part1=other_table.column AND ref_table.key_column_part2=1;
触发条件:使用非唯一索引
SELECT * FROM ref_table WHERE key_column=expr; SELECT * FROM ref_table,other_table WHERE ref_table.key_column=other_table.column; SELECT * FROM ref_table,other_table WHERE ref_table.key_column_part1=other_table.column AND ref_table.key_column_part2=1;
触发条件:只有在使用主键、单个字段的辅助索引、多个字段的辅助索引的最后一个字段进行范围查询才是 range
SELECT * FROM tbl_name WHERE key_column = 10; SELECT * FROM tbl_name WHERE key_column BETWEEN 10 and 20; SELECT * FROM tbl_name WHERE key_column IN (10,20,30); SELECT * FROM tbl_name WHERE key_part1 = 10 AND key_part2 IN (10,20,30);
The index join type is the same as ALL, except that the index tree is scanned. This occurs two ways:
触发条件:
只扫描索引树
1)查询的字段是索引的一部分,覆盖索引。
2)使用主键进行排序
触发条件:全表扫描,不走索引
最有效的方式是使用索引来覆盖查询。
一个大查询如果一次性执行的话,可能一次锁住很多数据、占满整个事务日志、耗尽系统资源、阻塞很多小的但重要的查询。
DELETE FROM messages WHERE create < DATE_SUB(NOW(), INTERVAL 3 MONTH);
rows_affected = 0 do { rows_affected = do_query( "DELETE FROM messages WHERE create < DATE_SUB(NOW(), INTERVAL 3 MONTH) LIMIT 10000") } while rows_affected > 0
将一个大连接查询分解成对每一个表进行一次单表查询,然后在应用程序中进行关联,这样做的好处有:
SELECT * FROM tag JOIN tag_post ON tag_post.tag_id=tag.id JOIN post ON tag_post.post_id=post.id WHERE tag.tag='mysql';
SELECT * FROM tag WHERE tag='mysql'; SELECT * FROM tag_post WHERE tag_id=1234; SELECT * FROM post WHERE post.id IN (123,456,567,9098,8904);
事务是指满足 ACID 特性的一组操作,可以通过 Commit 提交一个事务,也可以使用 Rollback 进行回滚。
事务最基本的莫过于 ACID 四个特性了,这四个特性分别是:
原子性
事务被视为不可分割的最小单元,事务的所有操作要么全部成功,要么全部失败回滚。
一致性
数据库在事务执行前后都保持一致性状态,在一致性状态下,所有事务对一个数据的读取结果都是相同的。
隔离性
一个事务所做的修改在最终提交以前,对其他事务是不可见的。
持久性
一旦事务提交,则其所做的修改将会永远保存到数据库中。即使系统发生崩溃,事务执行的结果也不能丢。
事务的 ACID 特性概念很简单,但不好理解,主要是因为这几个特性不是一种平级关系:
未提交读(READ UNCOMMITTED)
事务中的修改,即使没有提交,对其他事务也是可见的。
提交读(READ COMMITTED)
一个事务只能读取已经提交的事务所做的修改。换句话说,一个事务所做的修改在提交之前对其他事务是不可见的。
可重复读(REPEATABLE READ)
保证在同一个事务中多次读取同样数据的结果是一样的。
可串行化(SERIALIZABLE)
强制事务串行执行。
需要加锁实现,而其它隔离级别通常不需要。
隔离级别 | 脏读 | 不可重复读 | 幻影读 |
---|---|---|---|
未提交读 | √ | √ | √ |
提交读 | × | √ | √ |
可重复读 | × | × | √ |
可串行化 | × | × | × |
锁是数据库系统区别于文件系统的一个关键特性。锁机制用于管理对共享资源的并发访问。
共享锁(S Lock)
允许事务读一行数据
排他锁(X Lock)
允许事务删除或者更新一行数据
意向共享锁(IS Lock)
事务想要获得一张表中某几行的共享锁
意向排他锁
事务想要获得一张表中某几行的排他锁
多版本并发控制(Multi-Version Concurrency Control, MVCC)是 MySQL 的 InnoDB 存储引擎实现隔离级别的一种具体方式,用于实现提交读和可重复读这两种隔离级别。而未提交读隔离级别总是读取最新的数据行,无需使用 MVCC。可串行化隔离级别需要对所有读取的行都加锁,单纯使用 MVCC 无法实现。
版本号
隐藏的列
MVCC 在每行记录后面都保存着两个隐藏的列,用来存储两个版本号:
Undo 日志
MVCC 使用到的快照存储在 Undo 日志中,该日志通过回滚指针把一个数据行(Record)的所有快照连接起来。
以下实现过程针对可重复读隔离级别。
当开始一个事务时,该事务的版本号肯定大于当前所有数据行快照的创建版本号,理解这一点很关键。数据行快照的创建版本号是创建数据行快照时的系统版本号,系统版本号随着创建事务而递增,因此新创建一个事务时,这个事务的系统版本号比之前的系统版本号都大,也就是比所有数据行快照的创建版本号都大。
SELECT
多个事务必须读取到同一个数据行的快照,并且这个快照是距离现在最近的一个有效快照。但是也有例外,如果有一个事务正在修改该数据行,那么它可以读取事务本身所做的修改,而不用和其它事务的读取结果一致。
把没有对一个数据行做修改的事务称为 T,T 所要读取的数据行快照的创建版本号必须小于等于 T 的版本号,因为如果大于 T 的版本号,那么表示该数据行快照是其它事务的最新修改,因此不能去读取它。除此之外,T 所要读取的数据行快照的删除版本号必须是未定义或者大于 T 的版本号,因为如果小于等于 T 的版本号,那么表示该数据行快照是已经被删除的,不应该去读取它。
INSERT
将当前系统版本号作为数据行快照的创建版本号。
DELETE
将当前系统版本号作为数据行快照的删除版本号。
UPDATE
将当前系统版本号作为更新前的数据行快照的删除版本号,并将当前系统版本号作为更新后的数据行快照的创建版本号。可以理解为先执行 DELETE 后执行 INSERT。
在可重复读级别中,通过MVCC机制,虽然让数据变得可重复读,但我们读到的数据可能是历史数据,是不及时的数据,不是数据库当前的数据!这在一些对于数据的时效特别敏感的业务中,就很可能出问题。
对于这种读取历史数据的方式,我们叫它快照读 (snapshot read),而读取数据库当前版本数据的方式,叫当前读 (current read)。很显然,在MVCC中:
快照读
MVCC 的 SELECT 操作是快照中的数据,不需要进行加锁操作。
select * from table ….;
当前读
MVCC 其它会对数据库进行修改的操作(INSERT、UPDATE、DELETE)需要进行加锁操作,从而读取最新的数据。可以看到 MVCC 并不是完全不用加锁,而只是避免了 SELECT 的加锁操作。
INSERT; UPDATE; DELETE;
在进行 SELECT 操作时,可以强制指定进行加锁操作。以下第一个语句需要加 S 锁,第二个需要加 X 锁。
- select * from table where ? lock in share mode; - select * from table where ? for update;
事务的隔离级别实际上都是定义的当前读的级别,MySQL为了减少锁处理(包括等待其它锁)的时间,提升并发能力,引入了快照读的概念,使得select不用加锁。而update、insert这些“当前读”的隔离性,就需要通过加锁来实现了。
锁定一个记录上的索引,而不是记录本身。
如果表没有设置索引,InnoDB 会自动在主键上创建隐藏的聚簇索引,因此 Record Locks 依然可以使用。
锁定索引之间的间隙,但是不包含索引本身。例如当一个事务执行以下语句,其它事务就不能在 t.c 中插入 15。
SELECT c FROM t WHERE c BETWEEN 10 and 20 FOR UPDATE;
它是 Record Locks 和 Gap Locks 的结合,不仅锁定一个记录上的索引,也锁定索引之间的间隙。例如一个索引包含以下值:10, 11, 13, and 20,那么就需要锁定以下区间:
(-∞, 10] (10, 11] (11, 13] (13, 20] (20, +∞)
在 InnoDB 存储引擎中,SELECT 操作的不可重复读问题通过 MVCC 得到了解决,而 UPDATE、DELETE 的不可重复读问题通过 Record Lock 解决,INSERT 的不可重复读问题是通过 Next-Key Lock(Record Lock + Gap Lock)解决的。
脏读指的是不同事务下,当前事务可以读取到另外事务未提交的数据。
例如:
T1 修改一个数据,T2 随后读取这个数据。如果 T1 撤销了这次修改,那么 T2 读取的数据是脏数据。
不可重复读指的是同一事务内多次读取同一数据集合,读取到的数据是不一样的情况。
例如:
T2 读取一个数据,T1 对该数据做了修改。如果 T2 再次读取这个数据,此时读取的结果和第一次读取的结果不同。
在 InnoDB 存储引擎中,SELECT 操作的不可重复读问题通过 MVCC 得到了解决,而 UPDATE、DELETE 的不可重复读问题是通过 Record Lock 解决的,INSERT 的不可重复读问题是通过 Next-Key Lock(Record Lock + Gap Lock)解决的。
The so-called phantom problem occurs within a transaction when the same query produces different sets of rows at different times. For example, if a SELECT is executed twice, but returns a row the second time that was not returned the first time, the row is a “phantom” row.
Phantom Proble 是指在同一事务下,连续执行两次同样的 sql 语句可能返回不同的结果,第二次的 sql 语句可能会返回之前不存在的行。
幻影读是一种特殊的不可重复读问题。
一个事务的更新操作会被另一个事务的更新操作所覆盖。
例如:
T1 和 T2 两个事务都对一个数据进行修改,T1 先修改,T2 随后修改,T2 的修改覆盖了 T1 的修改。
这类型问题可以通过给 SELECT 操作加上排他锁来解决,不过这可能会引入性能问题,具体使用要视业务场景而定。
水平切分又称为 Sharding,它是将同一个表中的记录拆分到多个结构相同的表中。
当一个表的数据不断增多时,Sharding 是必然的选择,它可以将数据分布到集群的不同节点上,从而缓存单个数据库的压力。
垂直切分是将一张表按列分成多个表,通常是按照列的关系密集程度进行切分,也可以利用垂直气氛将经常被使用的列喝不经常被使用的列切分到不同的表中。
在数据库的层面使用垂直切分将按数据库中表的密集程度部署到不通的库中,例如将原来电商数据部署库垂直切分称商品数据库、用户数据库等。
事务问题
使用分布式事务来解决,比如 XA 接口
连接
可以将原来的连接分解成多个单表查询,然后在用户程序中进行连接。
唯一性
主要涉及三个线程:binlog 线程、I/O 线程和 SQL 线程。
主服务器处理写操作以及实时性要求比较高的读操作,而从服务器处理读操作。
读写分离能提高性能的原因在于:
读写分离常用代理方式来实现,代理服务器接收应用层传来的读写请求,然后决定转发到哪个服务器。
在实际业务中经常会使用到 JSON 数据类型,在查询过程中主要有两种使用需求:
- 在 where 条件中有通过 json 中的某个字段去过滤返回结果的需求
- 查询 json 字段中的部分字段作为返回结果(减少内存占用)
JSON_CONTAINS(target, candidate[, path])
如果在 json 字段 target 指定的位置 path,找到了目标值 condidate,返回 1,否则返回 0
如果只是检查在指定的路径是否存在数据,使用JSON_CONTAINS_PATH()
mysql> SET @j = '{"a": 1, "b": 2, "c": {"d": 4}}'; mysql> SET @j2 = '1'; mysql> SELECT JSON_CONTAINS(@j, @j2, '$.a'); +-------------------------------+ | JSON_CONTAINS(@j, @j2, '$.a') | +-------------------------------+ | 1 | +-------------------------------+ mysql> SELECT JSON_CONTAINS(@j, @j2, '$.b'); +-------------------------------+ | JSON_CONTAINS(@j, @j2, '$.b') | +-------------------------------+ | 0 | +-------------------------------+ mysql> SET @j2 = '{"d": 4}'; mysql> SELECT JSON_CONTAINS(@j, @j2, '$.a'); +-------------------------------+ | JSON_CONTAINS(@j, @j2, '$.a') | +-------------------------------+ | 0 | +-------------------------------+ mysql> SELECT JSON_CONTAINS(@j, @j2, '$.c'); +-------------------------------+ | JSON_CONTAINS(@j, @j2, '$.c') | +-------------------------------+ | 1 | +-------------------------------+
JSON_CONTAINS_PATH(json_doc, one_or_all, path[, path] ...)
如果在指定的路径存在数据返回 1,否则返回 0
mysql> SET @j = '{"a": 1, "b": 2, "c": {"d": 4}}'; mysql> SELECT JSON_CONTAINS_PATH(@j, 'one', '$.a', '$.e'); +---------------------------------------------+ | JSON_CONTAINS_PATH(@j, 'one', '$.a', '$.e') | +---------------------------------------------+ | 1 | +---------------------------------------------+ mysql> SELECT JSON_CONTAINS_PATH(@j, 'all', '$.a', '$.e'); +---------------------------------------------+ | JSON_CONTAINS_PATH(@j, 'all', '$.a', '$.e') | +---------------------------------------------+ | 0 | +---------------------------------------------+ mysql> SELECT JSON_CONTAINS_PATH(@j, 'one', '$.c.d'); +----------------------------------------+ | JSON_CONTAINS_PATH(@j, 'one', '$.c.d') | +----------------------------------------+ | 1 | +----------------------------------------+ mysql> SELECT JSON_CONTAINS_PATH(@j, 'one', '$.a.d'); +----------------------------------------+ | JSON_CONTAINS_PATH(@j, 'one', '$.a.d') | +----------------------------------------+ | 0 | +----------------------------------------+
实际使用:
$conds = new Criteria(); $conds->andWhere('dept_code', 'in', $deptCodes); if (!empty($aoiAreaId)) { $aoiAreaIdCond = new Criteria(); $aoiAreaIdCond->orWhere("JSON_CONTAINS_PATH(new_aoi_area_ids,'one', '$.\"$aoiAreaId\"')", '=', 1); $aoiAreaIdCond->orWhere("JSON_CONTAINS_PATH(old_aoi_area_ids,'one', '$.\"$aoiAreaId\"')", '=', 1); $conds->andWhere($aoiAreaIdCond); }
获取指定路径的值
-> vs ->>
Whereas the -> operator simply extracts a value, the ->> operator in addition unquotes the extracted result.
mysql> SELECT * FROM jemp WHERE g > 2; +-------------------------------+------+ | c | g | +-------------------------------+------+ | {"id": "3", "name": "Barney"} | 3 | | {"id": "4", "name": "Betty"} | 4 | +-------------------------------+------+ 2 rows in set (0.01 sec) mysql> SELECT c->'$.name' AS name -> FROM jemp WHERE g > 2; +----------+ | name | +----------+ | "Barney" | | "Betty" | +----------+ 2 rows in set (0.00 sec) mysql> SELECT JSON_UNQUOTE(c->'$.name') AS name -> FROM jemp WHERE g > 2; +--------+ | name | +--------+ | Barney | | Betty | +--------+ 2 rows in set (0.00 sec) mysql> SELECT c->>'$.name' AS name -> FROM jemp WHERE g > 2; +--------+ | name | +--------+ | Barney | | Betty | +--------+ 2 rows in set (0.00 sec)
实际使用:
$retTask = AoiAreaTaskOrm::findRows(['status', 'extra_info->>"$.new_aoi_area_infos" as new_aoi_area_infos', 'extra_info->>"$.old_aoi_area_infos" as old_aoi_area_infos'], $cond);
记 A->B 表示 A 函数决定 B,也可以说 B 函数依赖于 A。
如果 {A1,A2,... ,An} 是关系的一个或多个属性的集合,该集合函数决定了关系的其它所有属性并且是最小的,那么该集合就称为键码。
对于 A->B,如果能找到 A 的真子集 A',使得 A'-> B,那么 A->B 就是部分函数依赖,否则就是完全函数依赖。
对于 A->B,B->C,则 A->C 是一个传递函数依赖
以下的学生课程关系的函数依赖为 {Sno, Cname} -> {Sname, Sdept, Mname, Grade},键码为 {Sno, Cname}。也就是说,确定学生和课程之后,就能确定其它信息。
Sno | Sname | Sdept | Mname | Cname | Grade |
---|---|---|---|---|---|
1 | 学生-1 | 学院-1 | 院长-1 | 课程-1 | 90 |
2 | 学生-2 | 学院-2 | 院长-2 | 课程-2 | 80 |
2 | 学生-2 | 学院-2 | 院长-2 | 课程-1 | 100 |
3 | 学生-3 | 学院-2 | 院长-2 | 课程-2 | 95 |
不符合范式的关系,会产生很多异常,主要有以下四种异常:
学生-2
出现了两次。课程-1
需要删除第一行和第三行,那么 学生-1
的信息就会丢失。范式理论是为了解决以上提到四种异常。
高级别范式的依赖于低级别的范式,1NF 是最低级别的范式。
属性不可分。
每个非主属性完全函数依赖于键码。
可以通过分解来满足。
分解前
Sno | Sname | Sdept | Mname | Cname | Grade |
---|---|---|---|---|---|
1 | 学生-1 | 学院-1 | 院长-1 | 课程-1 | 90 |
2 | 学生-2 | 学院-2 | 院长-2 | 课程-2 | 80 |
2 | 学生-2 | 学院-2 | 院长-2 | 课程-1 | 100 |
3 | 学生-3 | 学院-2 | 院长-2 | 课程-2 | 95 |
以上学生课程关系中,{Sno, Cname} 为键码,有如下函数依赖:
Grade 完全函数依赖于键码,它没有任何冗余数据,每个学生的每门课都有特定的成绩。
Sname, Sdept 和 Mname 都部分依赖于键码,当一个学生选修了多门课时,这些数据就会出现多次,造成大量冗余数据。
分解后
关系-1
Sno | Sname | Sdept | Mname |
---|---|---|---|
1 | 学生-1 | 学院-1 | 院长-1 |
2 | 学生-2 | 学院-2 | 院长-2 |
3 | 学生-3 | 学院-2 | 院长-2 |
有以下函数依赖:
关系-2
Sno | Cname | Grade |
---|---|---|
1 | 课程-1 | 90 |
2 | 课程-2 | 80 |
2 | 课程-1 | 100 |
3 | 课程-2 | 95 |
有以下函数依赖:
非主属性不传递函数依赖于键码。
上面的 关系-1 中存在以下传递函数依赖:
可以进行以下分解:
关系-11
Sno | Sname | Sdept |
---|---|---|
1 | 学生-1 | 学院-1 |
2 | 学生-2 | 学院-2 |
3 | 学生-3 | 学院-2 |
关系-12
Sdept | Mname |
---|---|
学院-1 | 院长-1 |
学院-2 | 院长-2 |
Entity-Relationship,有三个组成部分:实体、属性、联系。
用来进行关系型数据库系统的概念设计。
包含一对一,一对多,多对多三种。
下图的 Course 和 Student 是一对多的关系。
一个实体在联系出现几次,就要用几条线连接。
下图表示一个课程的先修关系,先修关系出现两个 Course 实体,第一个是先修课程,后一个是后修课程,因此需要用两条线来表示这种关系。
虽然老师可以开设多门课,并且可以教授多名学生,但是对于特定的学生和课程,只有一个老师教授,这就构成了一个三元联系。
用一个三角形和两条线来连接类和子类,与子类有关的属性和联系都连到子类上,而与父类和子类都有关的连到父类上。
这都是些基础知识,我没想到再次回顾大半我都已忘却了,也庆幸有这样的假期能够重新拾起来。
说实话做自媒体后我充电的时间少了很多,也少了很多时间研究技术栈深度,国庆假期我也思考反思了很久,后面准备继续压缩自己业余时间,比如看手机看B站的时间压缩一下,还是得按时充电,目前作息还算规律早睡早起都做到了,我们一起加油哟。
我是敖丙,你知道的越多,你不知道的越多,感谢各位人才的:点赞、收藏和评论,我们下期见!