公众号:Python数据科学
作者:东哥起飞
大家都知道,Matplotlib是Python的可视化库,功能很强,可以绘制各种图。一些常规用法前不久分享过Matplotlib官方出品的cheatsheet:Matplotlib官方小抄手册公开,配套可视化代码已打包!
但是!今天我们不走寻常路,专挑几个贼骚的操作分享下.
Span Selector
是Matplotlib
中的鼠标小部件,widgets
是用于包含一些交互功能的python对象。Span Selector
可以通过鼠标框选,方便地查看选定区域的最大值和最小值。
下面是代码,首先创建一个基本折线图作为例子。然后,我们调用SpanSelector
方法并使用它来选择一个区域,然后在该区域中显示最大值和最小值。
import matplotlib.pyplot as plt from matplotlib.widgets import SpanSelector def onselect(xmin, xmax): print(xmin, xmax) return xmin, xmax fig, ax = plt.subplots() ax.plot([1,2,3,4,5,6,7], [10, 50, 100, 23,15,28,45]) span = SpanSelector(ax, onselect, 'horizontal', useblit=True, rectprops=dict(alpha=0.5, facecolor='red')) plt.show()
下面是具体操作。
Broken
的水平条形图是不连续具有间隙的图,它可用于数据值相差很大的情况下,例如,包含极端温度范围的数据集。在这种情况下,Broken的水平条形图非常合适,因为它们可以同时绘制最大和最小范围。
python模块matplotlib.broken_barh()
用于绘制Broken的水平条形图。
import matplotlib.pyplot as plt #Defining the x and y ranges xranges = [(5,5), (20,5),(20,7)] yrange = (2,1) #Plotting the broken bar chart plt.broken_barh(xranges, yrange, facecolors='green') xranges = [(6,2), (17,5),(50,2)] yrange = (15,1) plt.broken_barh(xranges, yrange, facecolors='orange') xranges = [(5,2), (28,5),(40,2)] yrange = (30,1) plt.broken_barh(xranges, yrange, facecolors='red') plt.xlabel('Sales') plt.ylabel('Days of the Month') plt.show()
Matplotlib
的表格功能也是可以在图中显示表格的。当我们希望以条形图的形式快速查看表格中的值时,这特别方便。表格可以放置在图表的顶部,底部或侧面。
import pandas as pd import numpy as np import matplotlib.pyplot as plt x = np.random.rand(5, 8)*.7 plt.plot(x.mean(axis=0), '-o', label='average per column') plt.xticks([]) plt.table(cellText=[['%1.2f' % xxx for xxx in xx] for xx in x],cellColours=plt.cm.GnBu(x),loc='bottom') plt.show()
有时候我们觉得可视化的背景太单调了,想增加点趣味性,比如将与数据相关的图像作为水印覆盖到可视化图形上。下面就以NBA的詹皇为例试试水,最后呈现出詹皇的数据,同时背景是詹皇本人。
首先,导入要用的数据集,图片和必要的库pandas
。
import numpy as np import matplotlib.image as image import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('income.csv') im = image.imread('Lebron_James.jpeg') # Image
用pandas
过滤掉仅由勒布朗组成的数据。
lebron_james = df[df['Name']=='LeBron James']
然后像下面这样操作,使用figimage
添加水印就ok了。
fig, ax = plt.subplots() ax.grid() ax.plot('Year','earnings ($ million)',data=lebron_james) ax.set_title("LeBron James earnings in US$(millions)") fig.figimage(im, 60, 40,cmap='ocean', alpha=.2) plt.show()
下面这个操作更有趣味性(更骚)。
如果你想让Matplotlib
图上添加一些扭曲,可以简单地xkcd()
在pyplot
对象上调用方法,如下所示。
import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('https://raw.githubusercontent.com/parulnith/Website-articles-datasets/master/India%20GDP%20Growth%20Rate%20.csv', parse_dates=['Year']) df['Year'] = df['Year'].apply(lambda x: pd.Timestamp(x).strftime('%Y')) #calling xkcd() method plt.xkcd(scale=5, length=400) df.plot(x='Year',y='GDP Growth (%)',kind='bar') plt.ylabel('GDP Growth (%)') plt.xticks(rotation=-20) plt.figure(figsize=(10,8)) plt.show()
文章参考:
https://towardsdatascience.co...
先分享这些,如果觉得有帮助,还请多分享和点个赞。
欢迎大家关注我的原创微信公众号 Python数据科学,专注于写基于Python的数据算法、机器学习、深度学习硬核干货。