为进一步优化美团搜索排序结果的深度语义相关性,提升用户体验,搜索与NLP部算法团队从2019年底开始基于BERT优化美团搜索排序相关性,经过三个月的算法迭代优化,离线和线上效果均取得一定进展。本文主要介绍探索过程以及实践经验。
美团搜索是美团App上最大的连接人和服务的入口,覆盖了团购、外卖、电影、酒店、买菜等各种生活服务。随着用户量快速增长,越来越多的用户在不同场景下都会通过搜索来获取自己想要的服务。理解用户Query,将用户最想要的结果排在靠前的位置,是搜索引擎最核心的两大步骤。但是,用户输入的Query多种多样,既有商户名称和服务品类的Query,也有商户别名和地址等长尾的Query,准确刻画Query与Doc之间的深度语义相关性至关重要。基于Term匹配的传统相关性特征可以较好地判断Query和候选Doc的字面相关性,但在字面相差较大时,则难以刻画出两者的相关性,比如Query和Doc分别为“英语辅导”和“新东方”时两者的语义是相关的,使用传统方法得到的Query-Doc相关性却不一致。
2018年底,以Google BERT[1]为代表的预训练语言模型刷新了多项NLP任务的最好水平,开创了NLP研究的新范式:即先基于大量无监督语料进行语言模型预训练(Pre-training),再使用少量标注语料进行微调(Fine-tuning)来完成下游的NLP任务(文本分类、序列标注、句间关系判断和机器阅读理解等)。美团AI平台搜索与NLP部算法团队基于美团海量业务语料训练了MT-BERT模型,已经将MT-BERT应用到搜索意图识别、细粒度情感分析、点评推荐理由、场景化分类等业务场景中[2]。
作为BERT的核心组成结构,Transformer具有强大的文本特征提取能力,早在多项NLP任务中得到了验证,美团搜索也基于Transformer升级了核心排序模型,取得了不错的研究成果[3]。为进一步优化美团搜索排序结果的深度语义相关性,提升用户体验,搜索与NLP部算法团队从2019年底开始基于BERT优化美团搜索排序相关性,经过三个月的算法迭代优化,离线和线上效果均取得一定进展,本文主要介绍BERT在优化美团搜索核心排序上的探索过程以及实践经验。
近年来,以BERT为代表的预训练语言模型在多项 NLP 任务上都获得了不错的效果。下图1简要回顾了预训练语言模型的发展历程。2013年,Google提出的 Word2vec[4]通过神经网络预训练方式来生成词向量(Word Embedding),极大地推动了深度自然语言处理的发展。针对Word2vec生成的固定词向量无法解决多义词的问题,2018年,Allen AI团队提出基于双向LSTM网络的ELMo[5]。ELMo根据上下文语义来生成动态词向量,很好地解决了多义词的问题。2017年底,Google提出了基于自注意力机制的Transformer[6]模型。
相比RNN模型,Transformer语义特征提取能力更强,具备长距离特征捕获能力,且可以并行训练,在机器翻译等NLP任务上效果显著。Open AI团队的GPT[7]使用Transformer替换RNN进行深层单向语言模型预训练,并通过在下游任务上Fine-tuning验证了Pretrain-Finetune范式的有效性。在此基础上,Google BERT引入了MLM(Masked Language Model)及NSP(Next Sentence Prediction,NSP)两个预训练任务,并在更大规模语料上进行预训练,在11项自然语言理解任务上刷新了最好指标。BERT的成功启发了大量后续工作,总结如下:
基于预训练好的BERT模型可以支持多种下游NLP任务。BERT在下游任务中的应用主要有两种方式:即Feature-based和Finetune-based。其中Feature-based方法将BERT作为文本编码器获取文本表示向量,从而完成文本相似度计算、向量召回等任务。而Finetune-based方法是在预训练模型的基础上,使用具体任务的部分训练数据进行训练,从而针对性地修正预训练阶段获得的网络参数。该方法更为主流,在大多数任务上效果也更好。
由于BERT在NLP任务上的显著优势,一些研究工作开始将BERT应用于文档排序等信息检索任务中。清华大学Qiao等人[18]详细对比了Feature-based和Finetune-based两种应用方式在段落排序(Passage Ranking)中的效果。滑铁卢大学Jimmy Lin团队[19]针对文档排序任务提出了基于Pointwise和Pairwise训练目标的MonoBERT和DuoBERT模型。此外,该团队[20]提出融合基于BERT的Query-Doc相关性和Query-Sentence相关性来优化文档排序任务的方案。为了优化检索性能和效果,Bing广告团队[21]提出一种双塔结构的TwinBERT分别编码Query和Doc文本。2019年10月,Google在其官方博客介绍了BERT在Google搜索排序和精选摘要(Featured Snippet)场景的应用,BERT强大的语义理解能力改善了约10%的Google搜索结果[22],除了英文网页,Google也正在基于BERT优化其他语言的搜索结果。值得一提的是美团AI平台搜索与NLP部在WSDM Cup 2020检索排序评测任务中提出了基于Pairwise模式的BERT排序模型和基于LightGBM的排序模型,取得了榜单第一名的成绩[23]。
美团搜索场景下相关性任务定义如下:给定用户Query和候选Doc(通常为商户或商品),判断两者之间相关性。搜索Query和Doc的相关性直接反映结果页排序的优劣,将相关性高的Doc排在前面,能提高用户搜索决策效率和搜索体验。为了提升结果的相关性,我们在召回、排序等多个方面做了优化,本文主要讨论在排序方面的优化。通过先对Query和Doc的相关性进行建模,把更加准确的相关性信息输送给排序模型,从而提升排序模型的排序能力。Query和Doc的相关性计算是搜索业务核心技术之一,根据计算方法相关性主要分为字面相关性和语义相关性。
早期的相关性匹配主要是根据Term的字面匹配度来计算相关性,如字面命中、覆盖程度、TFIDF、BM25等。字面匹配的相关性特征在美团搜索排序模型中起着重要作用,但字面匹配有它的局限,主要表现在:
为了解决上述问题,业界工作包括传统语义匹配模型和深度语义匹配模型。传统语义匹配模型包括:
这些方法弥补了字面匹配方法的不足,不过从实际效果上来看,还是无法很好地解决语义匹配问题。随着深度自然语言处理技术的兴起,基于深度学习的语义匹配方法成为研究热点,主要包括基于表示的匹配方法(Representation-based)和基于交互的匹配方法(Interaction-based)。
基于表示的匹配方法:使用深度学习模型分别表征Query和Doc,通过计算向量相似度来作为语义匹配分数。微软的DSSM[26]及其扩展模型属于基于表示的语义匹配方法,美团搜索借鉴DSSM的双塔结构思想,左边塔输入Query信息,右边塔输入POI、品类信息,生成Query和Doc的高阶文本相关性、高阶品类相关性特征,应用于排序模型中取得了很好的效果。此外,比较有代表性的表示匹配模型还有百度提出 SimNet[27],中科院提出的多视角循环神经网络匹配模型(MV-LSTM)[28]等。
基于交互的匹配方法:这种方法不直接学习Query和Doc的语义表示向量,而是在神经网络底层就让Query和Doc提前交互,从而获得更好的文本向量表示,最后通过一个MLP网络获得语义匹配分数。代表性模型有华为提出的基于卷积神经网络的匹配模型ARC-II[29],中科院提出的基于矩阵匹配的的层次化匹配模型MatchPyramid[30]。
基于表示的匹配方法优势在于Doc的语义向量可以离线预先计算,在线预测时只需要重新计算Query的语义向量,缺点是模型学习时Query和Doc两者没有任何交互,不能充分利用Query和Doc的细粒度匹配信号。基于交互的匹配方法优势在于Query和Doc在模型训练时能够进行充分的交互匹配,语义匹配效果好,缺点是部署上线成本较高。
BERT预训练使用了大量语料,通用语义表征能力更好,BERT的Transformer结构特征提取能力更强。中文BERT基于字粒度预训练,可以减少未登录词(OOV)的影响,美团业务场景下存在大量长尾Query(如大量数字和英文复合Query)字粒度模型效果优于词粒度模型。此外,BERT中使用位置向量建模文本位置信息,可以解决语义匹配的结构局限。综上所述,我们认为BERT应用在语义匹配任务上会有更好的效果,基于BERT的语义匹配有两种应用方式:
Feature-based方式是经过BERT得到Query和Doc的表示向量,然后计算余弦相似度,所有业务场景下Query-Doc相似度都是固定的,不利于适配不同业务场景。此外,在实际场景下为海量Doc向量建立索引存储成本过高。因此,我们选择了Finetune-based方案,利用搜索场景中用户点击数据构造训练数据,然后通过Fine-tuning方式优化Query-Doc语义匹配任务。图2展示了基于BERT优化美团搜索核心排序相关性的技术架构图,主要包括三部分:
BERT Fine-tuning任务需要一定量标注数据进行迁移学习训练,美团搜索场景下Query和Doc覆盖多个业务领域,如果采用人工标注的方法为每个业务领域标注一批训练样本,时间和人力成本过高。我们的解决办法是使用美团搜索积累的大量用户行为数据(如浏览、点击、下单等), 这些行为数据可以作为弱监督训练数据。在DSSM模型进行样本构造时,每个Query下抽取1个正样本和4个负样本,这是比较常用的方法,但是其假设Query下的Doc被点击就算是相关的,这个假设在实际的业务场景下会给模型引入一些噪声。
此处以商家(POI)搜索为例,理想情况下如果一个POI出现在搜索结果里,但是没有任何用户点击,可认为该POI和Query不相关;如果该POI有点击或下单行为,可认为该POI和Query相关。下单行为数据是用户“用脚投票”得来的,具有更高的置信度,因此我们使用下单数据作为正样本,使用未点击过的数据构造负样本,然后结合业务场景对样本进一步优化。数据优化主要包括对样本去噪和引入品牌数据两个方面。此外,为了评测算法离线效果,我们从构造样本中随机采样9K条样本进行了人工标注作为Benchmark数据集。
样本去噪
无意义单字Query过滤。由于单字Query表达的语义通常不完整,用户点击行为也比较随机,如<优,花漾星球专柜(中央大道倍客优)>,这部分数据如果用于训练会影响最终效果。我们去除了包含无意义单字Query的全部样本。
正样本从用户下单的POI中进行随机采样,且过滤掉Query只出现在POI的分店名中的样本,如<大润发,小龙坎老火锅(大润发店)>,虽然Query和POI字面匹配,但其实是不相关的结果。
负样本尝试了两种构造方法:全局随机负采样和Skip-Above采样。
品牌样本优化
美团商家中有很多品牌商家,通常品牌商家拥有数百上千的POI,如“海底捞”、“肯德基”、“香格里拉酒店”等,品牌POI名称多是“品牌+地标”文本形式,如“北京香格里拉饭店”。对Query和POI的相关性进行建模时,如果仅取Query和POI名进行相关性训练,POI名中的“地标”会给模型带来很大干扰。例如,用户搜“香格里拉酒店”时会召回品牌“香格里拉酒店”的分店,如“香格里拉酒店”和“北京香格里拉饭店”等,相关性模型受地标词影响,会给不同分店会打出不同的相关性分数,进而影响到后续排序模型的训练。因此,我们对于样本中的品牌搜索样本做了针对性优化。搜索品牌词有时会召回多个品牌的结果,假设用户搜索的品牌排序靠后,而其他品牌排序靠前会严重影响到用户体验,因此对Query和POI相关性建模时召回结果中其他品牌的POI可认为是不相关样本。针对上述问题,我们利用POI的品牌信息对<Query, POI>样本进行了重点优化。
经过样本去噪和品牌样本优化后,BERT相关性模型在Benchmark上的Accuracy提升23BP,相应地L2排序排序模型离线AUC提升17.2BP。
知识融合
我们团队基于美团业务数据构建了餐饮娱乐领域知识图谱—“美团大脑”[32],对于候选Doc(POI/SPU),通过图谱可以获取到该Doc的大量结构化信息,如地址、品类、团单,场景标签等。美团搜索场景中的Query和Doc都以短文本为主,我们尝试在预训练和Fine-tuning阶段融入图谱品类和实体信息,弥补Query和Doc文本信息的不足,强化语义匹配效果。
引入品类信息的预训练
由于美团搜索多模态的特点,在某些情况下,仅根据Query和Doc标题文本信息很难准确判断两者之间的语义相关性。如<考研班,虹蝶教育>,Query和Doc标题文本相关性不高,但是“虹蝶教育”三级品类信息分别是“教育-升学辅导-考研”,引入相关图谱信息有助于提高模型效果,我们首先基于品类信息做了尝试。
在相关性判别任务中,BERT模型的输入是<Query, Doc>对。对于每一个输入的Token,它的表征由其对应的词向量(Token Embedding)、片段向量(Segment Embedding)和位置向量(Position Embedding)相加产生。为了引入Doc品类信息,我们将Doc三级品类信息拼接到Doc标题之后,然后跟Query进行相关性判断,如图4所示。
对于模型输入部分,我们将Query、Doc标题、三级类目信息拼接,并用[SEP]分割,区分3种不同来源信息。对于段向量,原始的BERT只有两种片段编码EA和EB,在引入类目信息的文本信息后,引入额外的片段编码EC。引入额外片段编码的作用是防止额外信息对Query和Doc标题产生交叉干扰。由于我们改变了BERT的输入和输出结构,无法直接基于MT-BERT进行相关性Fine-tuning任务。我们对MT-BERT的预训练方式做了相应改进,BERT预训练的目标之一是NSP(Next Sentence Prediction),在搜索场景中没有上下句的概念,在给定用户的搜索关键词和商户文本信息后,判断用户是否点击来取代NSP任务。
添加品类信息后,BERT相关性模型在Benchmark上的Accuracy提升56BP,相应地L2排序模型离线AUC提升6.5BP。
引入实体成分识别的多任务Fine-tuning
在美团搜索场景中,Query和Doc通常由不同实体成分组成,如美食、酒店、商圈、品牌、地标和团购等。除了文本语义信息,这些实体成分信息对于Query-Doc相关性判断至关重要。如果Query和Doc语义相关,那两者除了文本语义相似外,对应的实体成分也应该相似。例如,Query为“Helens海伦司小酒馆”,Doc为“Helens小酒馆(东鼎购物中心店)”,虽然文本语义不完全匹配,但二者的主要的实体成分相似(主体成分为品牌+POI形式),正确的识别出Query/Doc中的实体成分有助于相关性的判断。微软的MT-DNN[33]已经证明基于预训练模型的多任务Fine-tuning可以提升各项子任务效果。由于BERT Fine-tuning任务也支持命名实体识别(NER)任务,因而我们在Query-Doc相关性判断任务的基础上引入Query和Doc中实体成分识别的辅助任务,通过对两个任务的联合训练来优化最终相关性判别结果,模型结构如下图5所示:
多任务学习模型的损失函数由两部分组成,分别是相关性判断损失函数和命名实体识别损失函数。其中相关性损失函数由[CLS]位的Embedding计算得到,而实体成分识别损失函数由每个Token的Embedding计算得到。2种损失函数相加即为最终优化的损失函数。在训练命名实体识别任务时,每个Token的Embedding获得了和自身实体相关的信息,从而提升了相关性任务的效果。
引入实体成分识别的多任务Fine-tuning方式后,BERT相关性模型在Benchmark上的Accuracy提升219BP,相应地L2排序模型AUC提升17.8BP。
Pairwise Fine-tuning
Query-Doc相关性最终作为特征加入排序模型训练中,因此我们也对Fine-tuning任务的训练目标做了针对性改进。基于BERT的句间关系判断属于二分类任务,本质上是Pointwise训练方式。Pointwise Fine-tuning方法可以学习到很好的全局相关性,但忽略了不同样本之前的偏序关系。如对于同一个Query的两个相关结果DocA和DocB,Pointwise模型只能判断出两者都与Query相关,无法区分DocA和DocB相关性程度。为了使得相关性特征对于排序结果更有区分度,我们借鉴排序学习中Pairwise训练方式来优化BERT Fine-tuning任务。
Pairwise Fine-tuning任务输入的单条样本为三元组<Query, Doc+, Doc->,对于同一Query的多个候选Doc,选择任意一个正例和一个负例组合成三元组作为输入样本。在下游任务中只需要使用少量的Query和Doc相关性的标注数据(有监督训练样本),对BERT模型进行相关性Fine-tuning,产出Query和Doc的相关性特征。Pairwise Fine-tuning的模型结构如下图6所示:
对于同一Query的候选Doc,选择两个不同标注的Doc,其中相关文档记为Doc+,不相关文档记Doc-。输入层通过Lookup Table 将Query, Doc+以及Doc-的单词转换为 Token 向量,同时会拼接位置向量和片段向量,形成最终输入向量。接着通过BERT模型可以分别得到(Query, Doc+)以及(Query, Doc-)的语义相关性表征,即BERT的CLS位输出。 经过Softmax归一化后,可以分别得到(Query, Doc+)和(Query, Doc-)的语义相似度打分。
对于同一Query的候选Doc,选择两个不同标注的Doc,其中相关文档记为Doc+,不相关文档记Doc-。输入层通过Lookup Table 将Query, Doc+以及Doc-的单词转换为 Token 向量,同时会拼接位置向量和片段向量,形成最终输入向量。接着通过BERT模型可以分别得到(Query, Doc+)以及(Query, Doc-)的语义相关性表征,即BERT的CLS位输出。 经过Softmax归一化后,可以分别得到(Query, Doc+)和(Query, Doc-)的语义相似度打分。
Pairwise Fine-tuning除了输入样本上的变化,为了考虑搜索场景下不同样本之间的偏序关系,我们参考RankNet[34]的方式对训练损失函数做了优化。
令$P_{ij}$为同一个Query下$Doc_i$相比$Doc_j$更相关的概率,其中$s_i$和$s_j$分别为$Doc_i$和$Doc_j$的模型打分,则$P_{ij}=1/({1+e^{-\sigma(s_i-s_j)}})$。使用交叉熵损失函数,令$S_{ij}$表示样本对的真实标记,当$Doc_i$比$Doc_j$更相关时(即$Doc_i$为正例而$Doc_j$为负例),$S_{ij}$为1,否则为-1,损失函数可以表示为:$C = \sum_{(i,j)\in N} \frac{1}{2} (1-S_{ij} )\sigma(s_i-s_j )+log(1+e^{-\sigma(s_i-s_j)})$,其中$N$表示所有在同Query下的Doc对。
使用Pairwise Fine-tuning方式后,BERT相关性模型在Benchmark上的Accuracy提升925BP,相应地L2排序模型的AUC提升19.5BP。
联合训练
前文所述各种优化属于两阶段训练方式,即先训练BERT相关性模型,然后训练L2排序模型。为了将两者深入融合,在排序模型训练中引入更多相关性信息,我们尝试将BERT相关性Fine-tuning任务和排序任务进行端到端的联合训练。
由于美团搜索涉及多业务场景且不同场景差异较大,对于多场景的搜索排序,每个子场景进行单独优化效果好,但是多个子模型维护成本更高。此外,某些小场景由于训练数据稀疏无法学习到全局的Query和Doc表征。我们设计了基于Partition-model的BERT相关性任务和排序任务的联合训练模型,Partition-model的思想是利用所有数据进行全场景联合训练,同时一定程度上保留每个场景特性,从而解决多业务场景的排序问题,模型结构如下图7所示:
输入层:模型输入是由文本特征向量、用户行为序列特征向量和其他特征向量3部分组成。
共享层:底层网络参数是所有场景网络共享。
场景层:根据业务场景进行划分,每个业务场景单独设计网络结构,打分时只经过所在场景的那一路。
损失函数:搜索业务更关心排在页面头部结果的好坏,将更相关的结果排到头部,用户会获得更好的体验,因此选用优化NDCG的Lambda Loss[34]。
联合训练模型目前还在实验当中,离线实验已经取得了不错的效果,在验证集上AUC提升了234BP。目前,场景切分依赖Query意图模块进行硬切分,后续自动场景切分也值得进行探索。
由于BERT的深层网络结构和庞大参数量,如果要部署上线,实时性上面临很大挑战。在美团搜索场景下,我们对基于MT-BERT Fine-tuning好的相关性模型(12层)进行了50QPS压测实验,在线服务的TP99增加超过100ms,不符合工程上线要求。我们从两方面进行了优化,通过知识蒸馏压缩BERT模型,优化排序服务架构支持蒸馏模型上线。
为了解决BERT模型参数量过大、前向计算耗时的问题,常用轻量化方法有三种:
在Query意图分类任务[2]中,我们基于MT-BERT裁剪为4层小模型达到了上线要求。意图分类场景下Query长度偏短,语义信息有限,直接裁剪掉几层Transformer结构对模型的语义表征能力不会有太大的影响。在美团搜索的场景下,Query和Doc拼接后整个文本序列变长,包含更复杂的语义关系,直接裁剪模型会带来更多的性能损失。因此,我们在上线Query-Doc相关性模型之前,采用知识蒸馏方式,在尽可能在保持模型性能的前提下对模型层数和参数做压缩。两种方案的实验效果对比见下表1:
在美团搜索核心排序的业务场景下,我们采用知识蒸馏使得BERT模型在对响应时间要求苛刻的搜索场景下符合了上线的要求,并且效果无显著的性能损失。知识蒸馏(Knowledge Distillation)核心思想是通过迁移知识,从而通过训练好的大模型得到更加适合推理的小模型。首先我们基于MT-BERT(12 Layers),在大规模的美团点评业务语料上进行知识蒸馏得到通用的MT-BERT蒸馏模型(6 Layers),蒸馏后的模型可以作为具体下游任务Fine-tuning时的初始化模型。在美团搜索的场景下,我们进一步基于通用的MT-BERT蒸馏模型(6 Layers)进行相关性任务Fine-tuning ,得到MT-BERT蒸馏(2 Layers)进行上线。
美团搜索线上排序服务框架如上图8所示,主要包括以下模块:
TF-Serving在线模型服务:L2排序模型、BERT模型上线使用TF-Serving进行部署。TF-Serving预测引擎支持Faster Transformer[38]加速BERT推理,提升了线上的预估速度。
为了进一步提升性能,我们将头部Query进行缓存只对长尾Query进行在线打分,线上预估结合缓存的方式,即节约了GPU资源又提升了线上预估速度。经过上述优化,我们实现了50 QPS下,L2模型TP99只升高了2ms,满足了上线的要求。
针对前文所述的各种优化策略,除了离线Benchmark上的效果评测之外,我们也将模型上线进行了线上AB评测,Baseline是当前未做任何优化的排序模型,我们独立统计了各项优化在Baseline基础上带来的变化,由于线上真实环境影响因素较多,为了确保结论可信,我们同时统计了QVCTR和NDCG两个指标,结果如表2所示:
从表2可以看出,各项优化对线上排序核心指标都带来稳定的提升。用户行为数据存在大量噪声不能直接拿来建模,我们基于美团搜索排序业务特点设计了一些规则对训练样本进行优化,还借助POI的品牌信息对样本进行映射和过滤。通过人工对样本进行评测发现,优化后的样本更加符合排序业务特点以及“人”对相关性的认知,同时线上指标的提升也验证了我们优化的有效性。知识融合的BERT模型引入大量结构化文本信息,弥补了POI名本身文本信息少的问题,排序模型CTR和NDCG都有明显的提升。对数据样本的优化有了一定的效果。为了更加匹配业务场景,我们从模型的角度进行优化,模型损失函数改用排序任务常用的Pairwise Loss,其考虑了文档之间的关系更加贴合排序任务场景,线上排序模型NDCG取得了一定的提升。
本文总结了搜索与NLP算法团队基于BERT在美团搜索核心排序落地的探索过程和实践经验,包括数据增强、模型优化和工程实践。在样本数据上,我们结合了美团搜索业务领域知识,基于弱监督点击日志构建了高质量的训练样本;针对美团搜索多模态特点,在预训练和Fine-tuning阶段融合图谱品类和标签等信息,弥补Query和Doc文本较短的不足,强化文本匹配效果。
在算法模型上,结合搜索排序优化目标,引入了Pairwise/Listwise的Fine-tuning训练目标,相比Pointwise方式在相关性判断上更有区分度。这些优化在离线Benchmark评测和线上AB评测中带来了不同幅度的指标提升,改善了美团搜索的用户体验。
在工程架构上,针对BERT在线预估性能耗时长的问题,参考业界经验,我们采用了BERT模型轻量化的方案进行模型蒸馏裁剪,既保证模型效果又提升了性能,同时我们对整体排序架构进行了升级,为后续快速将BERT应用到线上预估奠定了良好基础。
搜索与NLP算法团队会持续进行探索BERT在美团搜索中的应用落地,我们接下来要进行以下几个优化:
[1] Devlin, Jacob, et al. "BERT: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).
[2] 杨扬、佳昊等. 美团BERT的探索和实践
[3] 肖垚、家琪等. Transformer在美团搜索排序中的实践
[4] Mikolov, Tomas, et al. "Efficient estimation of word representations in vector space." arXiv preprint arXiv:1301.3781 (2013).
[5] Peters, Matthew E., et al. "Deep contextualized word representations." arXiv preprint arXiv:1802.05365 (2018).
[6] Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.
[7] Radford, Alec, et al. "Improving language understanding by generative pre-training."
[8] Sun, Yu, et al. "Ernie: Enhanced representation through knowledge integration." arXiv preprint arXiv:1904.09223 (2019).
[9] Zhang, Zhengyan, et al. "ERNIE: Enhanced language representation with informative entities." arXiv preprint arXiv:1905.07129 (2019).
[10] Liu, Weijie, et al. "K-bert: Enabling language representation with knowledge graph." arXiv preprint arXiv:1909.07606 (2019).
[11] Sun, Yu, et al. "Ernie 2.0: A continual pre-training framework for language understanding." arXiv preprint arXiv:1907.12412 (2019).
[12] Liu, Yinhan, et al. "Roberta: A robustly optimized bert pretraining approach." arXiv preprint arXiv:1907.11692 (2019).
[13] Joshi, Mandar, et al. "Spanbert: Improving pre-training by representing and predicting spans." Transactions of the Association for Computational Linguistics 8 (2020): 64-77.
[14] Wang, Wei, et al. "StructBERT: Incorporating Language Structures into Pre-training for Deep Language Understanding." arXiv preprint arXiv:1908.04577 (2019).
[15] Lan, Zhenzhong, et al. "Albert: A lite bert for self-supervised learning of language representations." arXiv preprint arXiv:1909.11942 (2019)
[16] Clark, Kevin, et al. "Electra: Pre-training text encoders as discriminators rather than generators." arXiv preprint arXiv:2003.10555 (2020).
[17] Qiu, Xipeng, et al. "Pre-trained Models for Natural Language Processing: A Survey." arXiv preprint arXiv:2003.08271 (2020).
[18] Qiao, Yifan, et al. "Understanding the Behaviors of BERT in Ranking." arXiv preprint arXiv:1904.07531 (2019).
[19] Nogueira, Rodrigo, et al. "Multi-stage document ranking with BERT." arXiv preprint arXiv:1910.14424 (2019).
[20] Yilmaz, Zeynep Akkalyoncu, et al. "Cross-domain modeling of sentence-level evidence for document retrieval." Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 2019.
[21]Wenhao Lu, et al. "TwinBERT: Distilling Knowledge to Twin-Structured BERT Models for Efficient Retrieval." arXiv preprint arXiv: 2002.06275
[22] Pandu Nayak.
[23]帅朋、会星等.WSDM Cup 2020检索排序评测任务第一名经验总结
[24] Blei, David M., Andrew Y. Ng, and Michael I. Jordan. "Latent dirichlet allocation." Journal of machine Learning research 3.Jan (2003): 993-1022.
[25] Jianfeng Gao, Xiaodong He, and JianYun Nie. Click-through-based Translation Models for Web Search: from Word Models to Phrase Models. In CIKM 2010.
[26] Huang, Po-Sen, et al. "Learning deep structured semantic models for web search using clickthrough data." Proceedings of the 22nd ACM international conference on Information & Knowledge Management. 2013.
[27] SimNet.
[28] Guo T, Lin T. Multi-variable LSTM neural network for autoregressive exogenous model[J]. arXiv preprint arXiv:1806.06384, 2018.
[29] Hu, Baotian, et al. "Convolutional neural network architectures for matching natural language sentences." Advances in neural information processing systems. 2014.
[30] Pang, Liang, et al. "Text matching as image recognition." Thirtieth AAAI Conference on Artificial Intelligence. 2016.
[31] 非易、祝升等. 大众点评搜索基于知识图谱的深度学习排序实践.
[32] 仲远、富峥等. 美团餐饮娱乐知识图谱——美团大脑揭秘.
[33] Liu, Xiaodong, et al. "Multi-task deep neural networks for natural language understanding." arXiv preprint arXiv:1901.11504 (2019).
[34] Burges, Christopher JC. "From ranknet to lambdarank to lambdamart: An overview." Learning 11.23-581 (2010): 81.
[35] Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. "Distilling the knowledge in a neural network." arXiv preprint arXiv:1503.02531 (2015).
[36] Sanh, Victor, et al. "DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter." arXiv preprint arXiv:1910.01108 (2019).
[37] Jiao, Xiaoqi, et al. "Tinybert: Distilling bert for natural language understanding." arXiv preprint arXiv:1909.10351 (2019).
[38] Faster Transformer.
阅读更多技术文章,请扫码关注微信公众号-美团技术团队!