人工智能学习

transformers库学习笔记(一):安装与测试

本文主要是介绍transformers库学习笔记(一):安装与测试,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

印象中觉得transformers是一个庞然大物,但实际接触后,却是极其友好,感谢huggingface大神。原文见tmylla.github.io。

安装

我的版本号:python 3.6.9;pytorch 1.2.0;CUDA 10.0。

pip install transformers
复制代码

pip之前确保安装pytorch1.1.0+。

测试

验证代码与结果

python -c "from transformers import pipeline; print(pipeline('sentiment-analysis')('I hate you'))"

在命令行输入如上命令后,transformers会自动下载依赖模型。输出以下结果,安装成果。

[{'label': 'NEGATIVE', 'score': 0.9991129040718079}]

transformer pipeline下载模型文件说明

transformers自动下载模型的保存位置:C:\Users\username\.cache\torch\,在模型下载以后,可以保存到其他位置。各文件的说明如下:

  1. json文件包含对应文件的‘url’和‘etag’标签。

  2. ‘a41...’为配置文件:distilbert-base-uncased-config。

  3. ‘26b...’为词典文件:bert-base-uncased-vocab。

  4. ‘437...’为finetuned-sst-2的配置文件:distilbert-base-uncased-finetuned-sst-2-english-config,注意其与‘a41...’文件的不同。

  5. ‘57d...’为Modelcard文件:distilbert-base-uncased-finetuned-sst-2-english-modelcard。

  6. ‘dd7...’为模型参数文件:distilbert-base-uncased-finetuned-sst-2-english-pytorch_model.bin。

pipeline()简介

可以看到,通过执行pipeline('sentiment-analysis')('I hate you'),transformers自动下载GLUE中sst2数据集的distilbert-base-uncased-finetuned-sst-2模型,对'I hate you'进行情感分析。

Pipeline是一个简捷的NLP任务接口,执行Input -> Tokenization -> Model Inference -> Post-Processing (Task dependent) -> Output一系列操作。目前支持Named Entity Recognition, Masked Language Modeling, Sentiment Analysis, Feature Extraction and Question Answering等任务。

以Question Answering为例:

from transformers import pipeline

nlp = pipeline("question-answering")

context = "Extractive Question Answering is the task of extracting an answer from a text given a question. An example of a question answering dataset is the SQuAD dataset, which is entirely based on that task. If you would like to fine-tune a model on a SQuAD task, you may leverage the `run_squad.py`."

print(nlp(question="What is extractive question answering?", context=context))
print(nlp(question="What is a good example of a question answering dataset?", context=context))
复制代码

对QA任务,transformers使用SQuAD数据集的distilbert-base-cased-distilled-squad模型,模型文件同上文介绍。

移动模型到自定义文件夹

以QA为例:

  1. 首先我们建立一个文件夹,命名为distilbert-base-cased-distilled-squad,然后将词典文件、模型配置文件、模型参数文件三个文件放入这个文件夹,并且将文件重命名为config.json、vocab.txt、pytorch_model.bin即可。

  2. 在代码中定义模型目录,DISTILLED = './distilbert-base-cased-distilled-squad',完整代码如下。

    from transformers import AutoTokenizer, AutoModelForQuestionAnswering
    import torch
    
    DISTILLED = './distilbert-base-cased-distilled-squad'
    tokenizer = AutoTokenizer.from_pretrained(DISTILLED)
    model = AutoModelForQuestionAnswering.from_pretrained(DISTILLED)
    
    text = """
    Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides general-purpose
    architectures (BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet…) for Natural Language Understanding (NLU) and Natural
    Language Generation (NLG) with over 32+ pretrained models in 100+ languages and deep interoperability between
    TensorFlow 2.0 and PyTorch.
    """
    
    questions = [
        "How many pretrained models are available in Transformers?",
        "What does Transformers provide?",
        "Transformers provides interoperability between which frameworks?",
    ]
    
    for question in questions:
        inputs = tokenizer.encode_plus(question, text, add_special_tokens=True, return_tensors="pt")
        input_ids = inputs["input_ids"].tolist()[0]
    
        text_tokens = tokenizer.convert_ids_to_tokens(input_ids)
        answer_start_scores, answer_end_scores = model(**inputs)
    
        answer_start = torch.argmax(answer_start_scores)  # Get the most likely beginning of answer with the argmax of the score
        answer_end = torch.argmax(answer_end_scores) + 1  # Get the most likely end of answer with the argmax of the score
    
        answer = tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(input_ids[answer_start:answer_end]))
    
        print(f"Question: {question}")
        print(f"Answer: {answer}\n")
    复制代码

参考

huggingface.co/transformer…

这篇关于transformers库学习笔记(一):安装与测试的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!