Apache Kafka 是一个分布式的流处理平台。它具有以下特点:
Messages And Batches
Kafka 的基本数据单元被称为 message(消息),为减少网络开销,提高效率,多个消息会被放入同一批次 (Batch) 中后再写入。
Topics And Partitions
Kafka 的消息通过 Topics(主题) 进行分类,一个主题可以被分为若干个 Partitions(分区),一个分区就是一个提交日志 (commit log)。消息以追加的方式写入分区,然后以先入先出的顺序读取。Kafka 通过分区来实现数据的冗余和伸缩性,分区可以分布在不同的服务器上,这意味着一个 Topic 可以横跨多个服务器,以提供比单个服务器更强大的性能。
由于一个 Topic 包含多个分区,因此无法在整个 Topic 范围内保证消息的顺序性,但可以保证消息在单个分区内的顺序性。
Producers And Consumers
生产者负责创建消息。一般情况下,生产者在把消息均衡地分布到在主题的所有分区上,而并不关心消息会被写到哪个分区。如果我们想要把消息写到指定的分区,可以通过自定义分区器来实现。
消费者是消费者群组的一部分,消费者负责消费消息。消费者可以订阅一个或者多个主题,并按照消息生成的顺序来读取它们。消费者通过检查消息的偏移量 (offset) 来区分读取过的消息。偏移量是一个不断递增的数值,在创建消息时,Kafka 会把它添加到其中,在给定的分区里,每个消息的偏移量都是唯一的。消费者把每个分区最后读取的偏移量保存在 Zookeeper 或 Kafka 上,如果消费者关闭或者重启,它还可以重新获取该偏移量,以保证读取状态不会丢失。
一个分区只能被同一个消费者群组里面的一个消费者读取,但可以被不同消费者群组中所组成的多个消费者共同读取。多个消费者群组中消费者共同读取同一个主题时,彼此之间互不影响。
Brokers And Clusters
一个独立的 Kafka 服务器被称为 Broker。Broker 接收来自生产者的消息,为消息设置偏移量,并提交消息到磁盘保存。Broker 为消费者提供服务,对读取分区的请求做出响应,返回已经提交到磁盘的消息。
Broker 是集群 (Cluster) 的组成部分。每一个集群都会选举出一个 Broker 作为集群控制器 (Controller),集群控制器负责管理工作,包括将分区分配给 Broker 和监控 Broker。
在集群中,一个分区 (Partition) 从属一个 Broker,该 Broker 被称为分区的首领 (Leader)。一个分区可以分配给多个 Brokers,这个时候会发生分区复制。这种复制机制为分区提供了消息冗余,如果有一个 Broker 失效,其他 Broker 可以接管领导权。
分区的原因
分区的原则
我们将 producer 发送的数据封装成一个 ProducerRecord 对象。
为保证 producer 发送的数据,能可靠的发送到指定的 topic,topic 的每个 partition 收到 producer 发送的数据后,都需要向 producer 发送 ack(acknowledgement 确认收到),如果 producer 收到 ack,就会进行下一轮的发送,否则重新发送数据。
副本数据同步策略
方案 | 优点 | 缺点 |
---|---|---|
半数以上完成同步,就发送 ack | 延迟低 | 选举新的 leader 时,容忍 n 台节点的故障,需要 2n+1 个副本 |
全部完成同步,才发送 ack | 选举新的 leader 时,容忍 n 台节点的故障,需要 n+1 个副本 | 延迟高 |
Kafka 选择了第二种方案,原因如下:
ISR
Leader 维护了一个动态的 in-sync replica set (ISR),意为和 leader 保持同步的 follower 集合。当 ISR 中的 follower 完成数据的同步之后,leader 就会给 producer 发送 ack。如果 follower 长时间未向 leader 同步数据,则该 follower 将被踢出 ISR,该时间阈值由 replica.lag.time.max.ms 参数设定。Leader 发生故障之后,就会从 ISR 中选举新的 leader。
ack 应答机制
对于某些不太重要的数据,对数据的可靠性要求不是很高,能够容忍数据的少量丢失,所以没必要等 ISR 中的 follower 全部接收成功。
所以 Kafka 为用户提供了三种可靠性级别,用户根据对可靠性和延迟的要求进行权衡,选择以下的配置。
ack 参数设置(asks)
数据一致性问题(故障处理)
注意:这只能保证副本之间的数据一致性,并不能保证数据不丢失或者不重复。
将服务器的 ACK 级别设置为 -1,可以保证 Producer 到 Server 之间不会丢失数据,即 At Least Once 语义。相对的,将服务器 ACK 级别设置为 0,可以保证生产者每条消息只会被发送一次,即 At Most Once 语义。
At Least Once 可以保证数据不丢失,但是不能保证数据不重复;相对的,At Least Once 可以保证数据不重复,但是不能保证数据不丢失。但是,对于一些非常重要的信息,比如说交易数据,下游数据消费者要求数据既不重复也不丢失,即 Exactly Once 语义。
在 0.11 版本以前的 Kafka,对此是无能为力的,只能保证数据不丢失,再在下游消费者对数据做全局去重。对于多个下游应用的情况,每个都需要单独做全局去重,这就对性能造成了很大影响。
0.11 版本的 Kafka,引入了一项重大特性:幂等性。所谓的幂等性就是指 Producer 不论向 Server 发送多少次重复数据,Server 端都只会持久化一条。幂等性结合 At Least Once 语义,就构成了 Kafka 的 Exactly Once 语义。即:
Kafka 的幂等性实现其实就是将原来下游需要做的去重放在了数据上游。开启幂等性的 Producer 在初始化的时候会被分配一个 PID,发往同一Partition 的消息会附带 Sequence Number。而 Broker 端会对做缓存,当具有相同主键的消息提交时,Broker 只会持久化一条。
但是 PID 重启就会变化,同时不同的 Partition 也具有不同主键,所以幂等性无法保证跨分区跨会话的 Exactly Once。
幂等性发送
上文提到,实现Exactly Once的一种方法是让下游系统具有幂等处理特性,而在Kafka Stream中,Kafka Producer本身就是“下游”系统,因此如果能让Producer具有幂等处理特性,那就可以让Kafka Stream在一定程度上支持Exactly once语义。
为了实现Producer的幂等语义,Kafka引入了Producer ID(即PID)和Sequence Number。每个新的Producer在初始化的时候会被分配一个唯一的PID,该PID对用户完全透明而不会暴露给用户。
对于每个PID,该Producer发送数据的每个<Topic, Partition>都对应一个从0开始单调递增的Sequence Number。
类似地,Broker端也会为每个<PID, Topic, Partition>维护一个序号,并且每次Commit一条消息时将其对应序号递增。对于接收的每条消息,如果其序号比Broker维护的序号(即最后一次Commit的消息的序号)大一,则Broker会接受它,否则将其丢弃:
上述设计解决了0.11.0.0之前版本中的两个问题:
Consumer 采用 pull(拉)模式从 broker 中读取数据。
push(推)模式很难适应消费速率不同的消费者,因为消息发送速率是由 broker 决定的。它的目标是尽可能以最快速度传递消息,但是这样很容易造成 consumer 来不及处理消息,典型的表现就是拒绝服务以及网络拥塞。而 pull 模式则可以根据 consumer 的消费能力以适当的速率消费消息。
pull 模式不足之处是,如果 kafka 没有数据,消费者可能会陷入循环中,一直返回空数据。针对这一点,Kafka 的消费者在消费数据时会传入一个时长参数 timeout,如果当前没有数据可供消费,consumer 会等待一段时间之后再返回,这段时长即为 timeout。
一个 consumer group 中有多个 consumer,一个 topic 有多个 partition,所以必然会涉及到 partition 的分配问题,即确定那个 partition 由哪个 consumer 来消费。
Kafka 有两种分配策略,一是 RoundRobin,一是 range。
roundrobin根据 partition 号对 consumer 个数取模后轮循分配。
由于 consumer 在消费过程中可能会出现断电宕机等故障,consumer 恢复后,需要从故障前的位置的继续消费,所以 consumer 需要实时记录自己消费到了哪个 offset,以便故障恢复后继续消费。
group + topic + partition(GTP) 才能确定一个 offset!
Kafka 0.9 版本之前,consumer 默认将 offset 保存在 Zookeeper 中,从 0.9 版本开始,consumer 默认将 offset 保存在 Kafka 一个内置的 topic 中,该 topic 为 __consumer_offsets(此时消费者对于 offset 相当于生产者)。
Kafka 使用 Zookeeper 来维护集群成员 (brokers) 的信息。每个 broker 都有一个唯一标识 broker.id,用于标识自己在集群中的身份,可以在配置文件 server.properties 中进行配置,或者由程序自动生成。下面是 Kafka brokers 集群自动创建的过程:
为了保证高可用,kafka 的分区是多副本的,如果一个副本丢失了,那么还可以从其他副本中获取分区数据。但是这要求对应副本的数据必须是完整的,这是 Kafka 数据一致性的基础,所以才需要使用 controller broker 来进行专门的管理。下面将详解介绍 Kafka 的副本机制。
分区和副本
Kafka 的主题被分为多个分区 ,分区是 Kafka 最基本的存储单位。每个分区可以有多个副本 。其中一个副本是首领副本 (Leader replica),所有的事件都直接发送给首领副本;其他副本是跟随者副本 (Follower replica),需要通过复制来保持与首领副本数据一致,当首领副本不可用时,其中一个跟随者副本将成为新首领。
ISR机制
每个分区都有一个 ISR(in-sync Replica) 列表,用于维护所有同步的、可用的副本。首领副本必然是同步副本,而对于跟随者副本来说,它需要满足以下条件才能被认为是同步副本:
如果副本不满足上面条件的话,就会被从 ISR 列表中移除,直到满足条件才会被再次加入。
不完全的首领选举
对于副本机制,在 broker 级别有一个可选的配置参数 unclean.leader.election.enable,默认值为 fasle,代表禁止不完全的首领选举。这是针对当首领副本挂掉且 ISR 中没有其他可用副本时,是否允许某个不完全同步的副本成为首领副本,这可能会导致数据丢失或者数据不一致,在某些对数据一致性要求较高的场景 (如金融领域),这可能无法容忍的,所以其默认值为 false,如果你能够允许部分数据不一致的话,可以配置为 true。
最少同步副本
ISR 机制的另外一个相关参数是 min.insync.replicas , 可以在 broker 或者主题级别进行配置,代表 ISR 列表中至少要有几个可用副本。这里假设设置为 2,那么当可用副本数量小于该值时,就认为整个分区处于不可用状态。此时客户端再向分区写入数据时候就会抛出异常 org.apache.kafka.common.errors.NotEnoughReplicasExceptoin: Messages are rejected since there are fewer in-sync replicas than required。
发送确认
Kafka 在生产者上有一个可选的参数 ack,该参数指定了必须要有多少个分区副本收到消息,生产者才会认为消息写入成功:
元数据请求机制
在所有副本中,只有领导副本才能进行消息的读写处理。由于不同分区的领导副本可能在不同的 broker 上,如果某个 broker 收到了一个分区请求,但是该分区的领导副本并不在该 broker 上,那么它就会向客户端返回一个 Not a Leader for Partition 的错误响应。 为了解决这个问题,Kafka 提供了元数据请求机制。
首先集群中的每个 broker 都会缓存所有主题的分区副本信息,客户端会定期发送发送元数据请求,然后将获取的元数据进行缓存。定时刷新元数据的时间间隔可以通过为客户端配置 metadata.max.age.ms 来进行指定。有了元数据信息后,客户端就知道了领导副本所在的 broker,之后直接将读写请求发送给对应的 broker 即可。
如果在定时请求的时间间隔内发生的分区副本的选举,则意味着原来缓存的信息可能已经过时了,此时还有可能会收到 Not a Leader for Partition 的错误响应,这种情况下客户端会再次求发出元数据请求,然后刷新本地缓存,之后再去正确的 broker 上执行对应的操作,过程如下图:
数据可见性
需要注意的是,并不是所有保存在分区首领上的数据都可以被客户端读取到,为了保证数据一致性,只有被所有同步副本 (ISR 中所有副本) 都保存了的数据才能被客户端读取到。
大家可以关注我的微信公众号一起学习进步。