开篇思考
一般我们用来判断一个元素是否存在,会想到用 List,Map,Set 等,会将元素先保存下来,然后进行筛选。 但是这样的形式都有一个弊端就是一定要保存数据才行,可是我们仅仅想知道是否存在数据,并不要求获取实际数据,
这时候就会觉得这种方式实在是浪费空间。
什么情况下我们只需要判断是否存在这个元素呢? 在系统设计的时候,我们会考虑大量并发的形式,但是很多请求可能是在访问不存在的数据,
那么我们就没有必要继续这个请求,可以在 API 网关层就直接过滤掉。
Bloom filter 是由 Howard Bloom 在 1970 年提出的二进制向量数据结构,它具有很好的空间和时间效率,
被用来检测一个元素是不是集合中的一个成员。
布隆过滤器实现是不保存数据本身,而是通过 K 个 hash 函数来计算在 byte[] 数组中的存放位置,
并把这个位置的值设置为 1, 而这个 K 到底是多少个呢,要根据公式来算出,待会列出。 除了这个 K 值,我们还要计算 byte[] 数组的长度 m ,下面一并列出计算公式:
fpp : 误判率参数,(must be 0 < fpp < 1)
n :预估的需要过滤的总数量
ln :求对数,不会的把高中老师的名字写下来
m :数组长度
n :预估的需要过滤的总数量
下面我们以数字 11 为例来使用,有个网站可以测试布隆过滤器,
在线测试布隆
优点:
缺点:
精度低,假设:a 计算的位置 1 ,3 ;b 计算的位置 5,7;c 计算的位置 1,7,那么 c 一定存在吗?
不能直接删除,因为想要删除就要把对应的位置置为 0 ,如果这样做,可能会影响其他值的过滤。
这个其实在 google guava 包中有现成的实现,不用我们自己去实现。我们看看是怎么实现的;
/** * 计算 bit 数组的长度公式 * n : 预估数据量 * p : 误差率 0-1 */ @VisibleForTesting static long optimalNumOfBits(long n, double p) { if (p == 0.0D) { p = 4.9E-324D; } return (long)((double)(-n) * Math.log(p) / (Math.log(2.0D) * Math.log(2.0D))); } /** * 计算 hash 函数个数的方法 * n : 预估数据量 * m : bit 数组长度 */ @VisibleForTesting static int optimalNumOfHashFunctions(long n, long m) { return Math.max(1, (int)Math.round((double)(m / n) * Math.log(2.0D))); }
import com.google.common.base.Charsets; import com.google.common.hash.BloomFilter; import com.google.common.hash.Funnels; public class BloomFilterTest { public static void main(String[] args) { int expectedInsertions = 800000000; double fpp = 0.00001; BloomFilter<CharSequence> bloomFilter = BloomFilter.create(Funnels.stringFunnel(Charsets.UTF_8), expectedInsertions, fpp); int i = 10000; while (i > 1){ bloomFilter.put("aa" + i); System.out.println(bloomFilter.mightContain("ab" + i)); i--; } } }
程序领域 点击关注+转发,私信发送【面试】或者【资料】可以收获更多资源