最近一直在了解关于kotlin协程的知识,那最好的学习资料自然是官方提供的学习文档了,看了看后我就萌生了翻译官方文档的想法。前后花了要接近一个月时间,一共九篇文章,在这里也分享出来,希望对读者有所帮助。个人知识所限,有些翻译得不是太顺畅,也希望读者能提出意见
协程官方文档:coroutines-guide
协程官方文档中文翻译:coroutines-cn-guide
协程官方文档中文译者:leavesC
[TOC]
select 表达式可以同时等待多个挂起函数,并选择第一个可用的函数来执行
选择表达式是
kotlinx.coroutines
的一个实验性的特性,这些 API 预计将在kotlinx.coroutines
库的即将到来的更新中衍化,并可能会有突破性的变化
我们现在有两个字符串生产者:fizz
和 buzz
。其中 fizz
每 300 毫秒生成一个字符串“Fizz”:
fun CoroutineScope.fizz() = produce<String> { while (true) { // sends "Fizz" every 300 ms delay(300) send("Fizz") } } 复制代码
接着 buzz
每 500 毫秒生成一个字符串“Buzz!”:
fun CoroutineScope.buzz() = produce<String> { while (true) { // sends "Buzz!" every 500 ms delay(500) send("Buzz!") } } 复制代码
使用挂起函数 receive,我们可以从两个通道接收其中一个的数据。但是 select 表达式允许我们使用其 onReceive 子句同时从两者接收:
suspend fun selectFizzBuzz(fizz: ReceiveChannel<String>, buzz: ReceiveChannel<String>) { select<Unit> { // <Unit> means that this select expression does not produce any result fizz.onReceive { value -> // this is the first select clause println("fizz -> '$value'") } buzz.onReceive { value -> // this is the second select clause println("buzz -> '$value'") } } } 复制代码
让我们运行代码 7 次:
import kotlinx.coroutines.* import kotlinx.coroutines.channels.* import kotlinx.coroutines.selects.* fun CoroutineScope.fizz() = produce<String> { while (true) { // sends "Fizz" every 300 ms delay(300) send("Fizz") } } fun CoroutineScope.buzz() = produce<String> { while (true) { // sends "Buzz!" every 500 ms delay(500) send("Buzz!") } } suspend fun selectFizzBuzz(fizz: ReceiveChannel<String>, buzz: ReceiveChannel<String>) { select<Unit> { // <Unit> means that this select expression does not produce any result fizz.onReceive { value -> // this is the first select clause println("fizz -> '$value'") } buzz.onReceive { value -> // this is the second select clause println("buzz -> '$value'") } } } fun main() = runBlocking<Unit> { //sampleStart val fizz = fizz() val buzz = buzz() repeat(7) { selectFizzBuzz(fizz, buzz) } coroutineContext.cancelChildren() // cancel fizz & buzz coroutines //sampleEnd } 复制代码
运行结果:
fizz -> 'Fizz' buzz -> 'Buzz!' fizz -> 'Fizz' fizz -> 'Fizz' buzz -> 'Buzz!' fizz -> 'Fizz' buzz -> 'Buzz!' 复制代码
当通道关闭时,select 中的 onReceive 子句会失败并导致相应的 select 引发异常。我们可以使用 onReceiveOrNull 子句在通道关闭时执行特定操作。下面的示例还显示了 select 是一个返回其查询方法结果的表达式:
suspend fun selectAorB(a: ReceiveChannel<String>, b: ReceiveChannel<String>): String = select<String> { a.onReceiveOrNull { value -> if (value == null) "Channel 'a' is closed" else "a -> '$value'" } b.onReceiveOrNull { value -> if (value == null) "Channel 'b' is closed" else "b -> '$value'" } } 复制代码
注意,onReceiveOrNull 是一个扩展函数,仅可用于具有不可为空元素的通道,这样就不会意外混淆通道是已关闭还是返回了空值这两种情况
让我们将其与生成四次“Hello”字符串的通道 a
和生成四次“World”字符串的通道 b
一起使用:
import kotlinx.coroutines.* import kotlinx.coroutines.channels.* import kotlinx.coroutines.selects.* suspend fun selectAorB(a: ReceiveChannel<String>, b: ReceiveChannel<String>): String = select<String> { a.onReceiveOrNull { value -> if (value == null) "Channel 'a' is closed" else "a -> '$value'" } b.onReceiveOrNull { value -> if (value == null) "Channel 'b' is closed" else "b -> '$value'" } } fun main() = runBlocking<Unit> { //sampleStart val a = produce<String> { repeat(4) { send("Hello $it") } } val b = produce<String> { repeat(4) { send("World $it") } } repeat(8) { // print first eight results println(selectAorB(a, b)) } coroutineContext.cancelChildren() //sampleEnd } 复制代码
这段代码的结果非常有趣,所以我们将在细节中分析它:
a -> 'Hello 0' a -> 'Hello 1' b -> 'World 0' a -> 'Hello 2' a -> 'Hello 3' b -> 'World 1' Channel 'a' is closed Channel 'a' is closed 复制代码
从中可以观察到几点
首先,select 偏向于第一个子句。当同时可以选择多个子句时,将选择其中的第一个子句。在这里,两个通道都在不断地产生字符串,因此作为 select 中的第一个子句的通道获胜。但是,因为我们使用的是无缓冲通道,所以 a 在其发送调用时会不时地被挂起,从而给了 b 发送的机会
第二个观察结果是,当通道已经关闭时,onReceiveOrNull 将立即被选中
select 表达式有 onSend 子句,可以与 selection 的偏向性质结合使用。
让我们写一个整数生产者的例子,当主通道上的消费者跟不上时,它会将其值发送到 side
通道:
fun CoroutineScope.produceNumbers(side: SendChannel<Int>) = produce<Int> { for (num in 1..10) { // produce 10 numbers from 1 to 10 delay(100) // every 100 ms select<Unit> { onSend(num) {} // Send to the primary channel side.onSend(num) {} // or to the side channel } } } 复制代码
消费者将会非常缓慢,每个数值处理需要 250 毫秒:
import kotlinx.coroutines.* import kotlinx.coroutines.channels.* import kotlinx.coroutines.selects.* fun CoroutineScope.produceNumbers(side: SendChannel<Int>) = produce<Int> { for (num in 1..10) { // produce 10 numbers from 1 to 10 delay(100) // every 100 ms select<Unit> { onSend(num) {} // Send to the primary channel side.onSend(num) {} // or to the side channel } } } fun main() = runBlocking<Unit> { //sampleStart val side = Channel<Int>() // allocate side channel launch { // this is a very fast consumer for the side channel side.consumeEach { println("Side channel has $it") } } produceNumbers(side).consumeEach { println("Consuming $it") delay(250) // let us digest the consumed number properly, do not hurry } println("Done consuming") coroutineContext.cancelChildren() //sampleEnd } 复制代码
让我们看看会发生什么:
Consuming 1 Side channel has 2 Side channel has 3 Consuming 4 Side channel has 5 Side channel has 6 Consuming 7 Side channel has 8 Side channel has 9 Consuming 10 Done consuming 复制代码
延迟值可以使用 onAwait 子句来查询。让我们启动一个异步函数,它在随机的延迟后会延迟返回字符串:
fun CoroutineScope.asyncString(time: Int) = async { delay(time.toLong()) "Waited for $time ms" } 复制代码
让我们随机启动十余个异步函数,每个都延迟随机的时间
fun CoroutineScope.asyncStringsList(): List<Deferred<String>> { val random = Random(3) return List(12) { asyncString(random.nextInt(1000)) } } 复制代码
现在,main 函数等待它们中的第一个完成,并统计仍处于活动状态的延迟值的数量。注意,我们在这里使用 select
表达式事实上是一种 Kotlin DSL,因此我们可以使用任意代码为它提供子句。在本例中,我们遍历一个延迟值列表,为每个延迟值提供 onAwait
子句。
import kotlinx.coroutines.* import kotlinx.coroutines.selects.* import java.util.* fun CoroutineScope.asyncString(time: Int) = async { delay(time.toLong()) "Waited for $time ms" } fun CoroutineScope.asyncStringsList(): List<Deferred<String>> { val random = Random(3) return List(12) { asyncString(random.nextInt(1000)) } } fun main() = runBlocking<Unit> { //sampleStart val list = asyncStringsList() val result = select<String> { list.withIndex().forEach { (index, deferred) -> deferred.onAwait { answer -> "Deferred $index produced answer '$answer'" } } } println(result) val countActive = list.count { it.isActive } println("$countActive coroutines are still active") //sampleEnd } 复制代码
输出结果:
Deferred 4 produced answer 'Waited for 128 ms' 11 coroutines are still active 复制代码
现在我们来编写一个通道生产者函数,它消费一个产生延迟字符串的通道,并等待每个接收的延迟值,但它只在下一个延迟值到达或者通道关闭之前处于运行状态。此示例将 onReceiveOrNull 和 onAwait 子句放在同一个 select
中:
fun CoroutineScope.switchMapDeferreds(input: ReceiveChannel<Deferred<String>>) = produce<String> { var current = input.receive() // start with first received deferred value while (isActive) { // loop while not cancelled/closed val next = select<Deferred<String>?> { // return next deferred value from this select or null input.onReceiveOrNull { update -> update // replaces next value to wait } current.onAwait { value -> send(value) // send value that current deferred has produced input.receiveOrNull() // and use the next deferred from the input channel } } if (next == null) { println("Channel was closed") break // out of loop } else { current = next } } } 复制代码
为了测试它,我们将用一个简单的异步函数,它在特定的延迟后返回特定的字符串:
fun CoroutineScope.asyncString(str: String, time: Long) = async { delay(time) str } 复制代码
main 函数只是启动一个协程来打印 switchMapDeferreds
的结果并向它发送一些测试数据:
import kotlinx.coroutines.* import kotlinx.coroutines.channels.* import kotlinx.coroutines.selects.* fun CoroutineScope.switchMapDeferreds(input: ReceiveChannel<Deferred<String>>) = produce<String> { var current = input.receive() // start with first received deferred value while (isActive) { // loop while not cancelled/closed val next = select<Deferred<String>?> { // return next deferred value from this select or null input.onReceiveOrNull { update -> update // replaces next value to wait } current.onAwait { value -> send(value) // send value that current deferred has produced input.receiveOrNull() // and use the next deferred from the input channel } } if (next == null) { println("Channel was closed") break // out of loop } else { current = next } } } fun CoroutineScope.asyncString(str: String, time: Long) = async { delay(time) str } fun main() = runBlocking<Unit> { //sampleStart val chan = Channel<Deferred<String>>() // the channel for test launch { // launch printing coroutine for (s in switchMapDeferreds(chan)) println(s) // print each received string } chan.send(asyncString("BEGIN", 100)) delay(200) // enough time for "BEGIN" to be produced chan.send(asyncString("Slow", 500)) delay(100) // not enough time to produce slow chan.send(asyncString("Replace", 100)) delay(500) // give it time before the last one chan.send(asyncString("END", 500)) delay(1000) // give it time to process chan.close() // close the channel ... delay(500) // and wait some time to let it finish //sampleEnd } 复制代码
代码的执行结果:
BEGIN Replace END Channel was closed 复制代码